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ABSTRACT

In this research, feature extraction and classification algorithms for high
dimensional data are investigated. Developments with regard to sensors for
Earth observation are moving in the direction of providing much higher
dimensional multispectral imagery than is now possible.

In analyzing such high dimensional data, processing time becomes an
important factor. With large increases in dimensionality and the number of
classes, processing time will increase significantly. To address this problem, a
multistage classification scheme is proposed which reduces the processing
time substantially by eliminating unlikely classes from further consideration at
each stage. Several truncation criteria are developed and the relationship
between thresholds and the error caused by the truncation is investigated.

Next a novel approach to feature extraction for classification is proposed
based directly on the decision boundaries. It is shown that all the features
needed for classification can be extracted from decision boundaries. A novel

characteristic of the proposed method arises by noting that only a portion of the
decision boundary is effective in discriminating between classes, and the
concept of the effective decision boundary is introduced. The proposed feature
extraction algorithm has several desirable properties: (1) it predicts the
minimum number of features necessary to achieve the same classification

accuracy as in the original space for a given pattern recognition problem (2) it
finds the necessary feature vectors. The proposed algorithm does not
deteriorate under the circumstances of equal means or equal covariances as
some previous algorithms do. In addition, the decision boundary feature
extraction algorithm can be used both for parametric and non-parametric
classifiers.

Finally, we study some problems encountered in analyzing high
dimensional data and propose possible solutions. We first recognize the
increased importance of the second order statistics in analyzing high
dimensional data. By investigating the characteristics of high dimensional data,
we suggest the reason why the second order statistics must be taken into
account in high dimensional data. Recognizing the importance of the second
order statistics, there is a need to represent the second order statistics. We
propose a method to visualize statistics using a color code. By representing
statistics using color coding, one can easily extract and compare the first and
the second statistics.
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CHAPTER 1 INTRODUCTION

1.1 Background

Advances in sensor technology for Earth observation make it possible to

collect multispectral data in much higher dimensionality. For example, the HIRIS

instrument now under development for the Earth Observing System (EOS) will

generate image data in 192 spectral bands simultaneously. In addition, multi-
source data also will provide high dimensional data. Such high dimensional
data will have several impacts on processing technology: (1) it will be possible

to classify more classes; (2) more processing power will be needed to process

such high dimensional data; and (3) feature extraction methods which utilize

such high dimensional data will be needed.

In this research, three main subjects are studied: fast likelihood

classification, feature extraction, and the characteristics of high dimensional

data and problems in analyzing high dimensional data.

The analysis of remotely sensed data is usually done by machine

oriented pattern recognition techniques. One of the most widely used pattern

recognition techniques is classification based on maximum likelihood (ML)

assuming Gaussian distributions of classes. A problem of Gaussian ML

classification is long processing time. This computational cost may become an

important problem if the remotely sensed data of a large area is to be analyzed
or if the processing hardware is more modest in its capabilities. The advent of

the future sensors will aggravate this problem. As a result, it will be an important

problem to extract detailed information from high dimensional data while

reducing processing time considerably.



1 Introduction

Feature extraction has long been an important topic in pattern

recognition and has been studied by many authors. Linear feature extraction

can be viewed as finding a set of vectors which effectively represent the

information content of an observation while reducing the dimensionality. In

pattern recognition, it is desirable to extract features which are focused on

discriminating between classes. Although numerous feature extraction/selection

algorithms have been proposed and successfully applied, it is also true that

there are some circumstances where the previous methods do not work well. In

particular, if there is little difference in mean vectors or little difference in

covariance matrices, some of the previous feature extraction methods fail to find

a good feature set.

Although many feature extraction algorithms for parametric classifiers are

proposed, relatively few feature extraction algorithms are available for non-

parametric classifiers. Furthermore, few feature extraction algorithms are

available which utilize the characteristics of a given non-parametric classifier.

As use of non-parametric classifiers such as neural networks to solve complex

problems increases, there is a great need for an effective feature extraction

algorithm for non-parametric classifiers.

In dealing with high dimensional data, there will be problems which have

not been encountered in analyzing relatively low dimensional data. In order to

realize the full potential of high dimensional data, it is necessary to understand

the characteristics of high dimensional data. One of these characteristics is the

increased importance of the second order statistics. Although some classifiers,

e.g., as a minimum distance classifier utilizing only first order statistics, often

perform relatively well on low dimensional data, it is observed that classifiers

utilizing only first order statistics show limited performance in high dimensional

space. Further, information contained in the second order statistics plays an

important role in discriminating between classes in high dimensional data. We

will illustrate this problem and investigate the reasons for it by examining the

characteristics of such high dimensional data.

More detailed background and related works on each of these subjects

will be discussed at the beginning of each chapter.

_



1 Introduction

1.2 Objective of Research

It is the objective of this research to better understand the characteristics

of high dimensional data relative to the analysis process, and to create

algorithms which increase the feasibility of its use.

In order to utilize the discriminating power of high dimensional data

without increasing processing time significantly, a fast likelihood classification

algorithm based on a multistage scheme is proposed. At each stage, unlikely

classes are eliminated from further consideration, thus reducing the number of

classes for which likelihood values are to be calculated at the next stage.

Several truncation criteria are developed and the relationship between such

truncation and the error increased is investigated.

Another objective of this research is to develop a feature extraction

algorithm which better utilizes the potential of high dimensional data. The

proposed feature extraction algorithm is based directly on the decision

boundary. By directly extracting feature vectors from the decision boundary

without assuming any underlying density function, the proposed algorithm can

be used for both parametric and non-parametric classifiers. The proposed

algorithm also predicts the minimum number of features needed to achieve the

same classification accuracy as in the original space for a given problem and

finds all the needed feature vectors. In addition, the proposed algorithm does

not deteriorate under the circumstances of equal means or equal covariances

as some previous algorithms do.

It is a further objective of this research to investigate and understand the

characteristics of high dimensional data. Problems in applying to high

dimensional data some analysis techniques which were primarily developed for

relatively low dimensional data are studied. In particular, the increased role of

second order statistics in analyzing high dimensional data is examined.

Although most analysis and classification of data are conducted by machine,

sometimes it is helpful and necessary for human to interpret and analyze data.

However, as the dimensionality grows, it becomes increasingly difficult for

human extraction of information from numerical values. In order to overcome

.



1 Introduction

this problem, a visualization method is proposed using a color coding scheme.

In this method, the correlation matrix of a class is displayed using a color code

along with the mean vector and the standard deviation. Each color represents a

degree of correlation.

1.3 Research Organization

In Chapter 2, the fast likelihood classification algorithm is presented for

high dimensional data. A method to avoid redundant calculations in multi-stage

classification is proposed. Several truncation criteria are developed and the

relationship between truncation and truncation error is investigated.

Experimental results are presented and compared. In Chapter 3, after reviewing

various feature extraction algorithms, the decision boundary feature extraction

algorithm is developed. After several new concepts are defined, all the needed

equations are derived. A decision boundary feature extraction procedure for

parametric classifiers is proposed and experimental results are presented. In

Chapter 4, the decision boundary feature extraction algorithm is extended to

non-parametric classifiers. In Chapter 5, the decision boundary feature

extraction algorithm is applied to a neural network. In Chapter 6, discriminant

feature extraction, which is a generalization of the decision boundary feature

extraction, is presented. In Chapter 7, problems encountered in analyzing high

dimensional data are studied and the characteristics of high dimensional data

are investigated. In Chapter 8, conclusions are summarized and suggestions for

future work are presented. Proofs of theorems, color pictures, and programs are

presented in appendices.

4 -



CHAPTER 2 FAST LIKELIHOOD CLASSIFICATION

2.1 Introduction

Earth observing systems such as the LANDSAT MSS and Thematic

Mapper have played a significant role in understanding and analyzing the Earth

resources by providing remotely sensed data of the Earth surface on a regular

basis. The analysis of remotely sensed data is usually done by machine

oriented pattern recognition techniques. One of the most widely used pattern

recognition techniques is classification based on maximum likelihood (ML)

assuming Gaussianly distributions of classes. A problem of ML Gaussian

classification is long processing time. This computational cost may become an

important problem if the remotely sensed data of a large area is to be analyzed

or if the processing hardware is more modest in its capabilities. The advent of

future sensors, for example HIRIS (High Resolution Imaging Spectrometer)

(Goetz and Herring 1989), which is projected to collect data in many more

spectral bands will aggravate this problem.

In this chapter, we propose a multistage classification procedure which

reduces the processing time substantially while maintaining essentially the

same accuracy. The proposed multistage classification procedure is composed

of several stages, and at each stage likelihood values of classes are calculated

using a fraction of the total features. This fraction increases as stages proceed.

Classes which are determined to be unlikely candidates by comparing

likelihood values with a threshold are truncated, i.e., eliminated from further

consideration so that the number of classes for which likelihood values are to

be calculated at the following stages is reduced. Depending on the number of

features and the number of classes, the processing time can be reduced by the

factor of 3 to 7.



2 Fast Likelihood Classification

2.2 Related Works and Background

Processing time has been an influential factor in designing classifiers for

the analysis of remotely sensed data. Even with the data from the previous

sensors such as MSS and TM, for which the numbers of spectral bands are 4

and 7, respectively, the cost of the analysis of even a moderate area was

considerable. Future sensors such as HIRIS which will collect data in 192

spectral bands at 30 m spatial resolution, will aggravate this problem.

Efforts to reduce processing time have been pursued in various ways. By

employing feature selection/extraction algorithms [(Muasher and

Landgrebe,1983), (Duchene and Leclercq, 1988), (Riccia and Shapiro, 1983),

(Eppler 1976) and (Merembeck and Turner, 1980)], the number of features can

be reduced substantially without sacrificing significant information. Feature

selection/extraction is generally done by removing redundant features or by

finding new features in transformed coordinates. This reduction in the number of

features has several advantages. First of all, higher accuracies can be achieved

in cases where the number of training samples is low, due to the Hughes

phenomenon (Hughes 1968). Since generally processing time increases with

the square of the number of features, a benefit of feature selection/extraction is

reduction in processing time.

Another possible approach to reduce computing time can be found in

decision tree classifiers [(Swain and Hauska 1977), (Chang and Pavlidis 1977),

and (Wang and Suen 1987)]. Though the decision tree classifier can have

several advantages depending on the situation, one of the advantages is

processing time. For instance, in an ideal binary decision tree classifier, the

computing time will be proportional to In(M) instead of M where M is the number

of classes, assuming the same number of features is used at each node.

However, how to find the optimum tree structure still remains a problem for the

decision tree classifier, though many algorithms are proposed for the design of

decision tree classifiers (Argentiero et al., 1982).

Feiveson (1983) proposed a procedure to reduce computing time by

employing thresholding. In his algorithm, the most likely candidate class of a

given observation is selected based on some prediction, and its probability

°



2 Fast Likelihood Classification

density function is calculated. If the probability density function is greater than a

threshold, calculation of the probability density functions for the other classes is

omitted, resulting in reduction of computing time. If it is possible to make a good

prediction, the computing time can be reduced significantly. But a problem of

this method is that its performance depends on the accuracy of predictions,

especially when many classes are involved.

Wald's sequential probability ratio test (SPRT) provides another

perspective (Wald, 1947). In Wald's sequential probability ratio test, the

sequential probability ratio

pn(Xlo_l)

;Ln = pn(Xl0)2)

is computed where Pn(Xlcoi) is the conditional probability density function of X for

class 0)i and n denotes the number of features. Then the likelihood ratio, Xn' is

compared with two stopping boundary A and B. If

_'n -> A, then it is decided that X ~ 0)1

Xn < B, then it is decided that X ~ 0)2

If B < ;Ln < A, an additional feature will be taken and likelihood ratio will be

compared with the additional feature. The error probabilities are related to the

two stopping boundaries by the following expressions.

1 - e21 e21

A= and B=I - e12e12

where eijisthe probability ofdeciding X ~ 0)i when X ~ 0)jist_e.

A sequential probability ratio test was applied to pattern classification by

Fu [(Fu 1962) and (Chien and Fu 1966)]. When the cost of a feature measure is

high or features are sequential in nature, the sequential classification proved

useful. Although the sequential classifier achieves the desired accuracy with the

minimum number of features, the processing time of the sequential classifier

may not be reduced proportionally due to the repeated calculation of the

probability density function.

°



2 Fast LikelihoodClassification

Generally it is true that the processing time of a classifier increases as the

number of features increase. In the Gaussian ML classifier, for instance, the

processing time is proportional to the square number of features. Therefore it is

possible to reduce the processing time considerably by exploiting the property

of the SPRT that the decision is reached with the lowest possible number of

features if the redundant computations caused by repeated calculation of

likelihood values can be avoided. There is, however, another problem in the

straightforward application of SPRT to pattern recognition where there are more

than two classes. The general relationship between stopping boundaries and

the optimum property of SPRT remains to be understood if there are more than

two classes.

The SPRT does not take into account the separability of two classes. If

the separability of classes is taken into account, a decision may be reached

sooner. Considering two cases of a two-class classification problem (Figure

2.1), it is observed that errors in case I are smaller than errors in case II even

though the same stopping boundaries are used for both classes. Thus for the

same error tolerances, the stopping boundaries for case I can be less strict than

case I1.

(a) Case ! (b) Case II

Figure 2.1 A hypothetical example where classes are more separable in
case I than those in case I1.

In this chapter, an algorithm is proposed which avoids the redundant

calculations of SPRT so that the characteristics of SPRT which classifies with
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the lowest possible number of features can be exploited in such a way that the

decision can be made with considerably less processing time [(Lee and

Landgrebe 1990), (Lee and Landgrebe 1991-3)]. It is noted that the proposed

multistage classifier is different from the Wald's sequential classifier in that the

number of stages of the multistage classifier is considerably smaller than the

number of features, while the sequential classifier has essentially the same

number of stages as the number of features. Also the criteria for truncation are

different. We also address the case where there are more than two classes.

Though some error is inevitably introduced by truncation, the error is minimal

and can be constrained within any specified range. Most of the samples which

cause error are found to be outliers. The relationship between truncation and

error caused by the truncation is investigated.

2.3 Multistage Gaussian Maximum Likelihood Classification

In the conventional Gaussian ML classifier, a discriminant function is

calculated for all classes using the whole feature set and the class which has

the largest value is chosen as the classification result of an observation X.

X _ _i if gi(X) > gj(X) for all j _ i

where gi is the discriminant function is given by

g_(X) = -Inl_l - (X-Mi)tT-,i 1(X-Mi)
(2.1)

where _:i is the covariance matrix of class _i and M i is the mean vector of class

_oi. The discriminant function is essentially the log likelihood value.

In the proposed multistage classifier, at each intermediate stage only a

portion of the features is used to calculate the discriminant function, and the

classes whose discriminant function values are less than a threshold are

truncated. At the final stage the whole feature set is used. The block diagram of

the multistage classifier is shown in Figure 2.2.

-9 -



2 Fast Likelihood Classification

Stage 1 I Stage 2

calculate likelihood I _ calculate likelihood _ ,
values using I"_ "P" values using _ " "

Final Stage
calculate likelihood

values using
all features and

classify

Figure 2.2 Multistage classifier.

By truncating unlikely classes at early stages where only a small portion

of the whole feature set is used, it is possible to reduce the number of classes

for the later stages where more features are to be used. Therefore if it is

possible to truncate a substantial number of classes at early stages, the

processing time can be reduced substantially. However, there are several

problems to be addressed. Since the discriminant function must be calculated

repeatedly at each stage, additional calculations are inevitably introduced. Thus

truncation alone does not guarantee less processing time. Another problem is

to develop criteria for truncation. The successful application of the multistage

classifier in reducing processing time depends on how accurately and early a

class can be truncated with little risk of introducing truncation error.

2.3.1 Additional Calculations in a Multistage Classifier

Suppose an N-stage classifier where n features are used at the nth stage

and N is the total number of features. A possibility to avoid unnecessary

calculations is to use the discriminant function values from the current stage in

calculating the discriminant function values for the next stage. The most time

consuming part in calculating the discriminant function (equation 2.1) is matrix

multiplication. Therefore to avoid the additional calculation, one would like to be

able to use

in calculating

(X n- Mn) t Z;n1 (X n- Mn)

(Xn. 1_ Mn.l )t "T-"ln+l(Xn+l-- Mn+l)

10-



2 Fast Likelihood Classification

where the subscript denotes the number of features,

equation (2.1).

This can not be done easily since T-,n+1 _ pt

and X. M are as in

P 1 where Z;n is the covariancea

matrix of n features, p is a column vector, and _n.l is the covariance matrix of

T_,n u 1 where is a column vector. But it can(n+l) features even though _n.l= u t a
u

J

be shown that if £n is invertible and (a-ut_'lu)is not zero, then T-,n+1= ut

is also invertible and

[ 1]_n +_n uUt_n "_n U I
" where o_= -

T-'n1+1= -_UtT_,'n; o_ a-utT-"lu

Without loss of generality, we can assume that the mean vector is zero. Then

-1
(Xn+ 1- Mn+l) t _n+l (Xn+l- Mn+l)

= [Xtn' Xn+l] -or.ut)-',n 1 Or, Xn+l

t -1 -1 -1 t -1 2
= Xn(_n +(Y-_n uut_--'n )Xn - 2_Xn+l Xn_n U -I--CCXn+1

t -1 -1 _ T.-Ix t 2= Xn)-'.nXn+Or.(ut)-'+nXn)(Ut_-nlXn) 2(7.Xn+lU n n+CY-Xn+l

t -1 (2.2)= X nZn Xn+ _[(ut_'lXn){(ut_,'nlXn) -- 2Xn+l} + X2n+l]

t -1

Considering equation (2.2), the value of Xn_nX n is known from the current

stage and ut_n;can be calculated once at the beginning and saved. Therefore

the number of multiplications and additions required to calculate (Xn+ 1- Mn+l)t

__.,n1+1(Xn+ 1- an+l) is (n+3) and (n+4), respectively. Thus the total number of

multiplications and additions for a class which passes all the truncation tests

11 -



2 Fast Likelihood Classification

and reaches the final stage are given by equation (2.3.1) and equation (2.3.2),

respectively.

N-1

,___.,(n+3) 1 5 1N2=_N2+_-N-3 == (2.3.1)
n,.l

N-1

_z_,(n+4) 1 7 1N2=_N2+_-1N-3 o, (2.3.2)
I1..1

On the other hand, the total number of multiplications and additions of the

conventional single stage Gaussian ML classifier are given by equation (2.4.1)

and equation (2.4.2), respectively

N(N+I) 1 3 12 + N = _-N2+ _-N _ N 2 (2.4.1)

N(N+I ) 1 1 1N22 = _N2+_N _ (2.4.2)

Comparing equations (2.3.1-2) and equations (2.4.1-2), it can be seen

that the total number of multiplications and additions of both methods are about

of the same order and the multistage classifier does not introduce significant

additional calculations.

2.3.2 Truncation by Absolute Region

Since unlikely classes are to be truncated at each stage in the multistage

classifier, a criterion for truncation must be developed. Along with the criteria for

truncations, the relationship between truncation and error caused by truncation

must also be understood and quantized.

One possible way for truncation is to find the smallest region, _"_'i' for class

cei which contains a certain portion, Pt, of class o_, and to check whether a test

sample is within that region. If the data classes are assumed to have Gaussian

distributions, the smallest region for a class will be a hyperellipsoid which has

its origin at the mean of the class and whose semi-axes are in the directions of

12 -



2 Fast Likelihood Classification

the eigenvectors of the covariance of the class with lengths proportional to the

corresponding eigenvalues. If a test sample is found outside region _i' class mi

can be truncated with the risk of error 1-P t. For example in Figure 2.3, class 1

can be truncated as an unlikely class with risk of error 0.001.

k (99"9 _/°°' Class 1)/Jo.Q 3 /

_ _ A test sample

Figure 2.3 A hypothetical distribution of 3 classes.

Finding the smallest region _i for class coi is equivalent to finding _ such that

er{Xl (X - Mi) t _:'_ (X - M i) < _} = et

where M i and T'.i are the mean vector and the covariance matrix of

class o_i.

The smallest region _i is given by

Qi = {X I (X - Mi) t T._ (X - Mi) -< ro2 } (2.5)

The quantity (X - Mi )t T_,'_ (X - M i) is the so-called Mahalanobis distance. It is

noteworthy that _ does not depend on M and T. but depends solely on n, the

dimensionality.

Prn{X I (X - M)tT_,"1(X - M) <-r2o}

13



2 Fast Likelihood Classification

(X--M)tT.,"(X-M)<ro

1 )tT_.lexp{-_(X - M (X - M)}dX

where the subscript n in Pr n denotes the number of elements in X.

The quantity r= _/(X-M)tT.'I(X-M), is a chi statistic, and Prn{X j (X-M)tT_,'I(X-M)

_<_} is given by

Prn{X I (X-M)tT.'I(x-M) < _}

ro

= prn{rlr2 < _} = C n 1 f rn., e._r2dr
o

=Pt (2.6)

where C n

n

2=_
-_(_) and ['( ) is a gamma function.

Therefore for a given threshold probability Pt, one can find ro by solving

equation (2.6) and the region _i for class o) i is given by equation (2.5). An

advantage of the above method of truncation is that the truncation can be

performed on an absolute basis. In other words, the truncation can be

performed by calculating the likelihood value of a class, and no information

about the other classes is required. It is noted that checking truncation by the

above method does not require any additional computation. It can be performed

as a part of calculating the discriminant function (equation 2.1). Figure 2.4

shows the flowchart of the multistage classifier where class coi is truncated if a

test sample is found outside region _i containing a prescribed portion of class

14 -



2 Fast Likelihood Classification

(_For a test Sample _)

I

d Using N features, calculate

I Mahalanobis distance

l of all(remaining) classes

I
Truncate all classes whose

Mahalanobis distances

exceed the threshold

I

I N=N+Nincr0l

yes

Using all features,
calculate likelihood values

of the remaining classes

Find the class which gives

the largest likelihood value

!

rint out the class ]
s the classification

esult

Figure 2.4 Flowchart of the multistage classifier.

2.3.3 Truncation by Likelihood Ratio

Another possibility for a truncation criterion is by likelihood ratio, or,

equivalently, by difference of the log likelihood values. Since in likelihood

classifiers classification is based upon the relative size of the likelihood values,

classes which have relatively low likelihood values compared with class COL,the

class having the largest likelihood value, when only a fraction of the whole

feature set is used, would be expected to have lower likelihood values relative

to class COLwhen the whole feature set is used. Thus such classes could be

truncated at an intermediate stage with little risk of error. To be more precise, at

each stage of the multistage classifier the discriminant function (equation 2.1)

which is equivalent to the log likelihood value of each class is computed. If gi(x)

< T, then class coi is truncated, where T is a threshold and determined by

T = L- D where L = max(gi(x), i =1 ,m)

15-



2 Fast Likelihood Classification

where m is the number of classes and D is a difference to be

selected by the user.

In this case, it is important to understand the relationship between the threshold

and the error increment caused by the truncations. We next derive an upper

bound on the error increment caused by the truncation.

In a two class classification problem using a Bayes' decision rule with the

[0,1] loss function case, the decision is made by the following rule (Fukunaga,

1990).

p(XI(01)P((01 )> P(XI(02)P((02)

P(Xl(01)P(_l) < p(XI(02)P((02)

X ~ (01

X ~ (02

The error probability is given by

= P((01)E1+ P((02)E2
c_

ei = [p(hl(01)dh and 8 2
where =

t'

P((01 )

t= nlp-_2 )}

p(XI(02)

h(X) = IOgp(xl(0_)

The quantities ¢i and ¢2 are bounded by

¢1 < exp[ -#(s) -st ]tfpg(g = hl(01)dh

< exp[ -#.(s) -st]

£2

t

< exp[ -I_(S) +(1-s)t ] fpg(g=hl(01)dh

< exp[ -p.(s) +(1-s)t ]

t

p(hl(02)dh
-OO

16-
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where pg(g=hlco 1) = exp[sh+ p.(s)]p(hl_o 1)
+_

p.(s)= -In _l(S) = -In .,rexp(sh)p(hlcol)dh
-OO

#(s) is obtained by taking the minus logarithm of £0l(s) which is the moment

generating function of h(X) for co1, and pg(g=hlo_ 1) is a probability density

function. In the case of normal distributions, an explicit mathematical expression

for I_(S) can be obtained.

)t 1I_(s) = 2 (M2- M1 [sT-'I+(1-s)T2]I(M2-M1) + _ln

The term It(1) is called the Bhattacharyya distance (Fukunaga, 1990) and

is used as a measure of the separability of two classes. The Bhattacharyya

distance gives an upper bound for the Bayes' error in the case of normal

distributions. By moving the decision boundary, one can reduce the omission

error arbitrarily for a specific class even though the overall error may increase.

In the similar way, an upper bound on incremental error of the multistage

classification with likelihood value truncation can be obtained. Assume class coI

has the largest log likelihood value L at the nth stage. Class coi is truncated if

p(c0i) n

In pn(Xlcoi) + In{p-_1)} +Dil < In pn(Xlcol).

The truncation error of class coi is bounded by

n n n n P(COi) n

"P-il(s) - stil) ] tij
_i < exp[ where = In{ }+Dil (2.9)
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n

where I_(s) is the J-M distance of class coi and class col and Dil is

an offset value of class col and class coI and superscript n denotes

the number of features.

It is noteworthy that the truncation boundary is moved so that truncation

error is reduced. Therefore by adjusting Di_ which depends on classes coi, col and

the number of features, the errors caused by truncations can be constrained

within any given error limit %.

Figure 2.5 shows the flowchart of the multistage classifier where

truncation is done by the differences of log likelihood values. In this example,

the number of features is increased by the same amount from stage to stage.

2.3.4 Upper Bound on the Total Incremental Error Probability of Multistage

Classifier

Assume that there are M classes and N stages without counting the final

stage. The total error increment, Eincre, caused by the truncations can be viewed

as the accumulation of truncation error at each stage and can be formulated as

M N

Eincre <- _, P(coi) '_, Tij
i-1 j-1

where

T_i • Probability that class %

M : The number of classes.

N .

is truncated at jth stage.

The number of stages without counting the final stage.

(2.10)

18 -



2 Fast Likelihood Classification

( For a test Sample .)

I

[ N=Nin,]

I

Using N features, calculate

log likelihood values

of all(remaining) classes

I
Find the largest log likelihood

value L and set the

threshold t il=L - D il

Truncate all classes whose

log likelihood values are less
than the threshold til

I

I N=N+Nincre]

yes

Using all features,
calculate likelihood values

of the remaining classes

I
Find the class which gives

the largest likelihood value

I

Print out the class 1
s the classification

result

Figure 2.5 Flowchart of the multistage classifier where the truncation is

done by the differences of log likelihood values.

If the truncation is done by absolute regions and P, is the threshold probability,

mij does not depend on the number of classes and is given by

Tij = (1-P,)Rij

where Rii is the probability that the samples of class coi which are

truncated at the jth stage have not been truncated until (j-1)th

stage.

From the definition of Rii, it can be easily seen that Ril is 1. In the desirable case,

R_i would be zero except R_I, i.e., all classes to be truncated are truncated at the

first stage. And the total error increment is given by
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2 Fast Likelihood Classification

£incre

M N

-<_, P(e)i) _, (1-P,)Ri i
i-1 j=l

M

= (1-P,) _', p(o)i) = (l-P,)
i=1

In the worst case, aij would be 1. In other words, the truncation error of class COi

at each stage is accumulated without any overlap. Then the total error

increment is given by

Eincre

M N

---_, P(mi) _L, (1-P')Rij
i=1 j,,1

M

= N(1-P,) _ p(coi) = N(1-P,)
i=1

Thus even in the worst case which is very unlikely, the total error increment is

bounded by

E;incre < N(1-P,)

A typical number of intermediate stages in a multistage classifier would

be 3 to 5. Thus by carefully choosing Pt, it is possible that the total error

increment due to truncation can be constrained within any specified range while

achieving a substantial reduction in processing time. In practice, the average

value of Rii would be much less than 1. In addition, since most of the samples

truncated in intermediate stages would be misclassified at the final stage, the

actual error increment due to truncation would be much smaller.

If the truncation is done by likelihood ratio and _o

the number of classes and can be formulated as

M

Tij=Rij __,_:o Q_
k=l k=i

is an error limit, Tij depends on

- 20 -
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where Rii is the probability that the samples of class 0) i which are

truncated at jth stage have not truncated until the (j-1)th stage, and

Qi_is the probability that the samples of class (oi which are

truncated by class (ok at the jth stage have not truncated by other

classes at the jth stage.

k
In the worst case, which is very unlikely, Qij and Rij would be 1. In other words,

the truncation error of class (oi by the other classes are accumulated without any

overlap at the jth stage, and the truncation error of class (oi at each stage is also

accumulated without any overlap. In the worst case, the total error increment is

bound by

M N M

E:incre< E P((oi) E Rij E E:o Q_ -< (M-1)N_
i=1 j=l k=l k_i

Therefore, even in the worst case, it is possible that the total error

increment due to truncation can be constrained within any specified range by

adjusting _o" In addition, it is observed that even a significant difference in ¢o

results in a minor difference in computing time. Moreover, in real data, the
k

average values of Qii and aij would be much less than 1, though the values

depend on the characteristics of data. In addition, since most of the samples

truncated in intermediate stages would be misclassified at the final stage, the

actual error increment due to truncation would be much smaller. Thus by

carefully choosing _o, it is possible that the total error increment due to

truncation can be constrained within any specified range while achieving a

substantial reduction in processing time.

2.4 Experiments and Results

Tests were conducted using FSS (Field Spectrometer System) data

which has 60 spectral bands (Biehl et al., 1982) The major parameters of FSS

are shown in Table 2.1. The data are multi-spectral and multi-temporal.
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2 Fast Likelihood Classification

Table 2.1 Parameters of Field Spectrometer System.

Number of Bands 60
Spectral Cover
Altitude

IF£ V(ground) 25 m

Figure 2.6 shows the relationship between accuracy and the number of

features for a 40-class classification using a conventional Gaussian ML

classifier. A total of 13,033 data points were used. Half of the data were used for

training and the other half were used for test. From Figure 2.6, it can be seen

that accuracies increase as the number of features increases. Though this

demonstrates clearly the discriminating power of high dimensional data, the

computation cost is also high. The proposed multistage classifier can be

successfully employed in such circumstances, in particular for high dimensional

and numerous class cases.

100
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I • I I • / ' I

0 S 10 15 20 25

Number of Features

Figure 2.6 Accuracy vs. number of features in a 40-class classification problem.

Two tests were conducted to evaluate the performances of the proposed

algorithm. The machine used was a CCI 3/32. The number of classes were 12

and 40 and the numbers of data were 6668 and 13,033, respectively. Half of the

data was again used for training and the other half for test. The number of

features was reduced to 28 and 26, respectively, using the algorithm proposed
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2 Fast Likelihood Classification

by Chen and Landgrebe (1989). Six classifiers were tested for each data set in

order to evaluate the performances of the proposed multistage classifiers. The

first one was the conventional single stage Gaussian ML classifier. The next two

are the multistage classifiers where truncation is done by absolute region _i"

Two threshold probabilities, 99.9% and 99%, were tested. The last three were

multistage classifiers where truncation was done by the difference of the

discriminant function values for ¢o=0.001, 0.005 and 0.01. The number of stages

of the tested multistage classifier was 4 in all cases and the number of features

used at the first stages was 5, 10 and 15, respectively. The whole feature set

was used at the final stage.

Figure 2.7 shows the performance comparison for the case of 12 classes.

The computing time of the conventional single stage Gaussian ML classifier,

C1, was 117 seconds with an accuracy of 95.2%. The computing time of the

multistage classifier, C2, where truncations were done by absolute region _i

with the threshold probability, Pt=99.9% was about 31 seconds with an

accuracy of 94%; the computing time of the multistage classifier, C3, with the

threshold probability, Pt = 99% was 25 seconds with the accuracy of 92.7%.

Comparing classifier C1 with classifier C2 and C3, the processing times of

multistage classifiers C1 and C2 were 21-27% of that of the single stage

classifier C1 with error increased by 1.2% and 2.5%, respectively.

3 °



2 Fast Likelihood Classification

Accuracy
-.---e,-- ProcessingTime

A

V

u
Io
I=,

o
o

96.0

95.5
95.0

94.5

94.0

93.5

93.0

92.5
92.0

91.5

91.0

90.5

90.0

Cl C2 (33 C4 C5 c__.,6

120

100

8O

6O

4O

2O

"o
c
0

Q
m

v

o
E

I.'-

c

w
o
o
O

n

Figure 2.7 Classifier performance comparison for the 12-class case.

The classifiers are as follows:

C1 Single Stage Gaussian ML Classifier.
C2 Multistage Classifier. Truncation by absolute region. Pt=99.9%.

C3 Multistage Classifier. Truncation by absolute region. Pt=99%.

C4 Multistage Classifier. Truncation by the difference of the

discriminant function values. _=0.001.

C5 Multistage Classifier. Truncation by the difference of the

discriminant function values. _=0.005.

C6 Multistage Classifier. Truncation by the difference of the

discriminant function values. ¢o=0.01.

On the other hand, the computing times of the multistage classifiers

where truncation was done by the difference of the discriminant function values

for ¢o=0.001, 0.005 and 0.01 were 21, 18 and 17 seconds, respectively with

accuracies of 94.7%, 94% and 93.2%. It is observed that the processing times

were reduced by the factor of 5.6 to 6.9 while errors increased by 0.5%, 1.2%

and 2%, respectively. Table 2.2 shows accuracies and error increments for

individual classes due to the truncation. It can be seen that the error increments

due to the truncation are evenly distributed and no particular class is sacrificed.
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Table 2.2 Accuracies and error increments for individual classes
due to truncation. Minus signs in the "Error Incre." rows
indicate that accuracies increased.

c,...,,, i cL1ic,21 c,310,41c,51c,61cl71ct81c,9IC,1010,111c,121Av.
r,,1Acc. 97.4 99.1 96.7 96.7 96.3 72.6 98.1 99.2 91.0 98.3 98.7 97.3 95.2

C2Aoc. 95.4 97.6 96.1 95.1 96.6 73.7 96.1 96.6 89.7 96.1 97.4 94.5 94.0

C2 ErrIncm. 2.0 1.5 0.6 1.5 -0.3 -1.2 1.9 2.5 1.3 ; 2.2 1.3 2.7 1.2

C3Aoc. 93.3 96.5 93.7 93.3 95.3 76.8 94.6 95.4 88.5 94.0 94.7 94.5 92.7

C,,3ErrDncre. 4.1 2.7 3.0 3.3 0.9 -4.2 3.5 3.8 2.6 4.3 4.0 2.7 2.5

C.,4Acc. 96.2 98.2 95.8 96.4 96.3 77.2 96.1 97.9 89.7 97.4 98.7 94.5 94.7
C4ErrIncre. 1.2 0.9 0.9 0.3 0.0 -4.6 1.9 1.3 1.3 0.9 0.0 2.7 0.5

GSAc¢. 95.9 97.0i 93.7 93.3 96.3 82.2 94.6 97.5 88.0 96.1 97.8 93.6 94.0

C5ErrIncre. 1.4 2.1 3.0 3.3 0.0 -9.7 3.5 1.7 3.0 2.2 0.9 3.6 1.2

C6A¢¢. 95.1 97.0 92.7 90.0 96.6 85.3 91.9 96.2 87.6 95.7 97.8 91.8 93.2

C6 Errlncre. 2.3 2.1 3.9 6.7 -0.3 -12.7 6.2 3.0 3.4 2.6 0.9 5.5 2.0

Figure 2.8 shows the performance comparison for the classification with

40 classes. The computing time of the conventional single stage Gaussian ML

classifier, C1, was 655 seconds with an accuracy of 79.4% while the computing

times of the multistage classifier, C2 and C3 was 188 and 155 seconds with

accuracies of 78.3% and 76.8%, respectively. Comparing classifier C1 with

multistage classifiers C2 and C3, the processing times of multistage classifiers

C1 and C2 were 24% and 29% of that of the single stage classifier C1 with an

error increase of 1.1% and 2.6%.

On the other hand, the computing times of multistage classifiers, C4, C5

and C6, were 123, 103 and 93 seconds with accuracies of 78.7%, 77.9% and

77.4%, respectively. It is observed that the processing times were reduced by

factor of 5.3 to 7.0 while errors increased by 0.7%, 1.5% and 2%, respectively.

In particular, comparing C1 and C4, the processing time for 40 classes was

reduced from 652 seconds to 123 seconds, a factor of more than 5, while the

accuracy decreased from 79.4% to 78.7%.

In most applications, such error increments due to truncations would be

acceptable. It is also observed that most of the test samples which caused

truncation error are found at boundaries and may be truncated if a chi threshold

is applied. In other words, the results for such test samples are not reliable nor
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critical. In addition, the error tolerance can be adjusted depending on the

requirement of the application.
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Figure 2.8 Classifier performance comparison for the 40-class case.

2.5 Conclusion

It is shown that the computing time can be reduced by a factor of 3 to 7

using the proposed multistage classification while maintaining essentially the

same accuracies when the Gaussian ML classifier is used. Although the

proposed algorithm was developed on the assumption of Gaussian ML

classifier, the relationship between threshold and the error increments are

derived without the assumption of Gaussian ML classification. Thus the

proposed algorithm can be used for other classification algorithms if an

algorithm to avoid the repeated calculation is developed. Therefore after

selecting features which depend on an accuracy requirement, the processing

time could be reduced substantially without losing any significant accuracy by

employing the multistage classifiers, particularly for high dimensional data.
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CHAPTER 3 DECISION BOUNDARY FEATURE EXTRACTION

3.1 Introduction

Linear feature extraction can be viewed as finding a set of vectors that

represent an observation while reducing the dimensionality. In pattern

recognition, it is desirable to extract features that are focused on discriminating

between classes. Although a reduction in dimensionality is desirable, the error

increment due to the reduction in dimensionality must be constrained to be

adequately small. Finding the minimum number of feature vectors which

represent observations with reduced dimensionality without sacrificing the

discriminating power of classifiers along with finding the specific feature vectors

has been one of the most important problems of the field of pattern analysis and

has been studied extensively.

In this chapter, we address this problem and propose a new algorithm for

feature extraction based directly on the decision boundary. The algorithm

predicts the minimum number of features to achieve the same classification

accuracy as in the original space; at the same time the algorithm finds the

needed feature vectors. Noting that feature extraction can be viewed as

retaining informative features or eliminating redundant features, we define the

terms "discriminantly informative" feature and "discriminantly redundant"

feature. This reduces feature extraction to finding discriminantly informative

features. We will show how discriminantly informative features and

discriminantly redundant features are related to the decision boundary and can

be derived from the decision boundary. We will need to define several terms

and derive several theorems and, based on the theorems, propose a procedure

to find discriminantly informative features from the decision boundary.
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3 Decision Boundary Feature Extraction

3.2 Background and previous works

Most linear feature extraction algorithms can be viewed as linear

transformations. One of the most widely used transforms for signal

representation is the Karhunen-Loeve transformation. Although the Karhunen-

Loeve transformation is optimum for signal representation in the sense that it

provides the smallest mean square error for a given number of features, quite

often the features defined by the Karhunen-Loeve transformation are not

optimum with regard to class separability (Malina 1987). In feature extraction for

classification, it is not the mean square error but the classification accuracy that

must be considered as the primary criterion for feature extraction.

Many authors have attempted to find the best features for classification

based on criterion functions. Fisher's method finds the vector that gives the

greatest class separation as defined by a criterion function (Duda and Hart

1973). Fisher's linear discriminant can be generalized to multiclass problems. In

canonical analysis (Richards 1986), a within-class scatter matrix _w and a

between-class scatter matrix _b are used to formulate a criterion function and a

vector d is selected to maximize

where

dtZ;bd

dtT.,wd

T_.w = ,_,P(coi)_; i (within-class scatter matrix)

,_ = _,p(coi)(M i- Mo)(M i- Mo) t (between-class scatter matrix)
I

M o = _/__P(coi)M i

Here M i, g-,i, and P(oJi) are the mean vector, the covariance matrix, and the prior

probability of class coi, respectively. Although the vector found by canonical

analysis performs well in most cases, there are several problems with canonical

analysis. First of all, if there is little or no difference in mean vectors, the feature

vector selected by canonical analysis is not reliable. Second, if a class has a

mean vector very different from the mean vectors of the other classes, that class

will be dominant in calculating the between-class scatter matrix, thus resulting

in ineffective feature extraction.
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3 Decision Boundan/Feature Extraction

Fukunaga recognized that the best representational features are not

necessarily the best discriminating features and proposed a preliminary

transformation (Fukunaga and Koontz 1970). The Fukunaga-Koontz method

first finds a transformation matrix T such that,

T[S1 + S2]T "t = I

where S_ is the autocorrelation matrix of class o_.

Fukunaga showed that TS1Tt and TS2 T't have the same eigenvectors and all

the eigenvalues are bounded by 0 and 1. It can be seen that the eigenvector

with the largest differences in eigenvalues is the axis with the largest

differences in variances. The Fukunaga-Koontz method will work well in

problems where the covariance difference is dominant with little or no mean

difference. However, by ignoring the information of mean difference, the

Fukunaga-Koontz method is not suitable in the general case and could lead to

irrelevant results (Foley and Sammon 1975).

Kazakos proposed a linear scalar feature extraction algorithm that

minimizes the probability of error in discriminating between two multivariate

normally distributed pattern classes (Kazakos 1978). By directly employing the

probability of error, the feature extraction method finds the best single feature

vector in the sense that it gives the smallest error. However, if more than one

feature is necessary, it is difficult to generalize the method.

Heydorn proposed a feature extraction method by deleting redundant

features where redundancy is defined in terms of a marginal distribution

function (Heydorn 1971 ). The redundancy test uses a coefficient of redundancy.

However, the method does not find a redundant feature vector unless the vector

is in the direction of one of the original feature vectors even though the

redundant feature vector could be detected by a linear transformation.

Decell et al. developed an explicit expression for the smallest

compression matrix such that the Bayes classification regions are preserved

(Decell et al. 1981). Young et al. extended the method to a general class of

density functions know as e-generalized normal densities (Young et al. 1985)
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and Tubbs et al. discussed the problem of unknown population parameters

(Tubbs et al. 1982).

Feature selection using statistical distance measures has also been

widely studied and successfully applied [(Swain and King 1973), (Swain and

Davis 1978), and (Kailath 1967)]. However, as the dimension of data increases,

the combination of bands to be examined increases exponentially, resulting in

unacceptable computational cost. Several procedures to find a sub-optimum

combination of bands instead of the optimum combination of bands have been

proposed with a reasonable computational cost (Devijver and Kittler 1982).

However, if the best feature vector or the best set of feature vectors is not in the

direction of any original feature vector, more features may be needed to achieve

the same performance.

Depending on the characteristics of the data, it has been shown that the

previous feature extraction/selection methods can be applied successfully.

However, it is also true that there are some cases in which the previous

methods fail to find the best feature vectors or even good feature vectors, thus

resulting in difficulty in choosing a suitable method to solve a particular

problem. Although some authors addressed this problem [(Malina 1981) and

(Longstaff 1987)], there is still another problem. One must determine, for a given

problem, how many features must be selected to meet the requirement. More

fundamentally, it is difficult with the previous feature extraction/selection

algorithms to predict the intrinsic discriminant dimensionality, which is defined

as the smallest number of features needed to achieve the same classification

accuracy as in the original space for a given problem.

In this chapter, we propose a different approach to the problem of feature

extraction for classification. The proposed algorithm is based on decision

boundaries directly. The proposed algorithm predicts the minimum number of

features needed to achieve the same classification accuracy as in the original

space for a given problem and finds the needed feature vectors, and it does not

deteriorate when mean or covariance differences are small.
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3.3 Feature Extraction and subspace

3.3.1 Feature Extraction and Subspace

Let X be an observation in the N-dimensional Euclidean space E N. Then

X can be represented by

N

X = _,ai(z i
i=1

where {o¢1,0r.2,..,or.N} is a basis of E N

Then feature extraction is equivalent to finding a subspace, W, and the new

features can be found by projecting an observation into the subspace. Let W be

a M-dimensional subspace of E N spanned by M linearly independent vectors,

13 ,132....13M.
W = Span{131,132.... 13M}and dim(W) = M < N

Assuming that 13i's are orthonormal, the new feature set in subspace W is given

by

{xt131, xt132,.., Xt_M} = {b 1,b 2.... bM} where b i = xt_i

M

Now let X = _'L_bi13i . Then X will be an approximation to X in terms of a linear
i=1

combination of {131,_2 .... 13M} in the original N-dimensional space.

3.3.2 Bayes' Decision Rule for Minimum Error

Now consider briefly Bayes' decision rule for minimum error, which will

be used later in the proposed feature extraction algorithm. Let X be an

observation in the N-dimensional Euclidean space EN under hypothesis H=: X

0)i i=1,2. Decisions will be made according to the following rule.

Decide 0)1 if P(0)I)P(XI0)I) > P(0)2)P(XI0)2)

else 0)2
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where P(Xl0)i) is a conditional density function and P(0)i) is a priori probability of

class 0)i.

Let h(X) _ P(Xl0)I) and t P(0)1)
= _np(xl0)2) = Inp--_. Then

Decide 0)1 if h(X) < t

else ¢o2

Feature extraction has been used in many applications, and the criteria

for feature extraction can be different in each case. If feature extraction is

directed specifically at classification, a criterion could be to maintain

classification accuracy. As a new approach to feature extraction for

classification, we will find a subspace, W, with the minimum dimension M and

the spanning vectors {13i} of the subspace such that for any observation X

(h(X) - t)(h( X ) - t) > 0 (3.1)

where X is an approximation of X in terms of a basis of subspace W in the

original N-dimensional space. The physical meaning of (3.1) is that the

classification result for X is the same as the classification result of X. In practice,

feature vectors might be selected in such a way as to maximize the number of

observations for which (3.1) holds with a constraint on the dimensionality of

subspaces. In this chapter, we will propose an algorithm which finds the

minimum dimension of a subspace such that (3.1) holds for all the given

observations and which also finds the spanning vectors {13i} of the subspace. In

the next section, we define some needed terminology which will be used in

deriving theorems later.

3.4 Definitions

3.4.1 Discriminantly Redundant Feature

Feature extraction can be performed by eliminating redundant features,

however, what is meant by "redundant" may be dependent on the application.
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For the purpose of feature extraction for classification, we will define a

"discriminantly redundant feature" as follows.

Definition 3.1 We say the vector _k is discriminantly redundant if for any

(h(X) - t)(h( X ) - t) > 0 (3.1)

In other words,

if h(X) >t, then h(_:) >tor

if h(X) < t, then h(:_) < t

N N

where X = ,__.,bi_i and _: = _,bi_i
==1 i=1 i_k

The physical meaning of (3.1) is that the classification result for X is the same

as the classification result of X. Figure 3.1 shows an example of a discriminantly

redundant feature. In this case even though X is moved along the direction of

vector _k, the classification result will remain unchanged. This means vector 13k

makes no contribution in discriminating between classes, thus vector _k is

redundant for the purpose of classification.

LI.

h

,_ _ h(X)> t
" _ Decision boundary

Feature 1

Figure 3.1 An example of a discriminantly redundant feature.
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3.4.2 Discriminantly Informative Feature

In a similar manner, we define a discriminantly informative feature.

Definition 3.2 We say that J3k is discriminantly informative if there exists at

least one observation Y such that

In other words,

(h(Y) - t)(h(_') - t) < 0

h(Y) > t but h(_') < t or

h(Y) < t but h(_') > t

N N

where Y = i=_bi_i and _' = i-l_i,,bi_i

(3.2)

The physical meaning of (3.2) is that there exists an observation Y such that the

classification result of _' is different from the classification result of Y. It is noted

that (3.2) need not hold for all observations. A vector will be discriminantly

informative if there exists at least one observation whose classification result

can be changed as the observation moves along the direction of the vector.

Figure 3.2 shows an example of a discriminantly informative feature. In this

case, as Y is moved along the direction of vector _k, the classification result will

be changed.

o,J

_=

LL.

h(

_ h(X) > t
" _ Decision boundary

Feature 1

Figure 3.2 An example of a discriminantly informative feature.
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3.4.3 Decision Boundaries and Effective Decision Boundaries

The decision boundary of a two-class problem is a locus of points on

which a posteriori probabilities are the same. To be more precise, we define a

decision boundary as follows:

Definition 3.3 A decision boundary is defined as

{ X l h(X) = t }

A decision boundary can be a point, line, curved surface or curved hyper-

surface. Although a decision boundary can be extended to infinity, in most

cases some portion of the decision boundary is not significant. For practical

purposes, we define the effective decision boundary as follows:

Definition 3.4 The effective decision boundary is defined as

{Xlh(X)=t,X_ R 1Orx_ R 2}

where R1 is the smallest region which contains a certain portion, Pthreshold, of

class o)1 and R 2 is the smallest region which contains a certain portion,

Pthreshold, of class 0)2.

The effective decision boundary may be seen as an intersection of the decision

boundary and the regions where most of the data are located. Figures 3.3 and

3.4 show some examples of decision boundaries and effective decision

boundaries. In these examples, the threshold probability, Pthreshold, is set to

99.9%. In the case of Figure 3.3, the decision boundary is a straight line and the

effective decision boundary is a straight line segment, the latter being a part of

the former. In Figure 3.4, the decision boundary is an ellipse and the effective

decision boundary is a part of that ellipse.
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Figure 3.3

Figure 3.4

_ boundary

MI_M 2, T.I=_ 2. The decision boundary is a straight line and the

effective decision boundary is a line segment coincident to it.

_ Effective decision

boundary

_..__...._.jf. Decision boundary

MI_M2, _1_2. The decision boundary and the effective decision

boundary.

3.4.4 Intrinsic Discriminant Dimension

One of the major problems of feature extraction for classification is to find

the minimum number of features needed to achieve the same classification

accuracy as in the original space. To be more exact, we define the term,

"intrinsic discriminant dimension".

Definition 3.5 The Intrinsic discriminant dimension for a given problem is

defined as the smallest dimension of a subspace, W, of the N-

dimensional Euclidean space E N such that for any observation X in the

problem,

(h(X) - t)(h( X ) - t) > 0
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M

where X = ,=_ai_ i _ W and M _<N.

The intrinsic discriminant dimension can be seen as the smallest dimensional

subspace wherein the same classification accuracy can be obtained as could

be obtained in the original space.

The intrinsic discriminant dimension is related to the discriminantly

redundant feature vector and the discriminantly informative feature vector. In

particular, if there are M linearly independent discriminantly informative feature

vectors and L linearly independent discriminantly redundant feature vectors,

then it can be easily seen that

N=M+L

where N is the original dimension and the intrinsic discriminant dimension is

equal to M. Figure 3.5 shows an example of the intrinsic discriminant

dimension. In the case of Figure 3.5, the intrinsic discriminant dimension is one

even though the original dimensionality is two. If V 2 is chosen as a new feature

vector, the classification accuracy will be the same as in the original 2-

dimensional space.

Figure 3.5

LI-

i

i

Feature 1

_:1=_2. In this case the intrinsic discriminant dimension is one
even though the original space is two dimensional.
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3.5 Feature Extraction Based on the Decision Boundary

3.5.1 Redundancy Testing Theorem

From the definitions given in the previous section, a useful theorem can

be stated which tests whether a feature vector is a discriminantly redundant

feature or a discriminantly informative feature.

Theorem 3.1 If a vector is parallel to the tangent hyper-plane to the decision

boundary at every point on the decision boundary for a pattern

classification problem, the vector contains no information useful in

discriminating between classes for the pattern classification problem,

i.e., the vector is discriminantly redundant.

Proof. Let {131,132.... _N}be a basis of the N-dimensional Euclidean space E N, and

let _N be a vector that is parallel to the tangent hyper-plane to the decision

boundary at every point on the decision boundary. Let W be a subspace

spanned by N-1 spanning vectors, _1,_2,",_N-1, i.e.,

W = Span{_l,_ 2 .... _N-1} and dim(W) = N-1

If bN is not a discriminantly redundant feature, there must exist an observation X

such that

(h(X) -t )(h( X ) - t ) < 0

N N-1

where X= _biP i and X = _ciJ3i
i=1 i.1

Without loss of generality, we can assume that the set of vectors _1,_2,..,_N is an

orthonormal set. Then bi = c i for i=1 ,N-I. Assume that there is an observation X

such that

(h(X) -t )(h( :_ ) - t ) < 0

This means X and X are on different sides of the decision boundary. Then the

vector

Xd = X - X = bN_ N

8 -
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where bN is a coefficient, must pass through the decision boundary. But this

contradicts the assumption that _N is parallel to the tangent hyper-plane to the

decision boundary at every point on the decision boundary. Therefore if _N is a

vector parallel to the tangent hyper-plane to the decision boundary at every

point on the decision boundary, then for all observations X

(h(X) -t )(h(X:)- t )> 0

Therefore _N is discriminantly redundant. Figure 3.6 shows an illustration of the

proof.
Q.E.D.

LI.

h(X) < t

• _ Decision boundary

Feature 1

Figure 3.6 If two observations are on the different sides of the decision

boundary, the line connecting the two observations will pass

through the decision boundary.

It is noted that we did not make any assumption on the number of classes

in proving Theorem 3.1. In other words, Theorem 3.1 holds for any number of

classes. From the theorem, we can easily derive the following lemmas which

are very useful in finding discriminantly informative features.

Lemma 3.1 If vector V is orthogonal to the vector normal to the decision

boundary at every point on the decision boundary, vector V contains no
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information useful in discriminating between classes, i.e., vector V is

discriminantly redundant.

Lemma 3.2 If a vector is normal to the decision boundary at at least one

point on the decision boundary, the vector contains information useful in

discriminating between classes, i.e., the vector is discriminantly

informative.

3.5.2 Decision Boundary Feature Matrix

From the previous theorem and lemmas, it can be seen that a vector

normal to the decision boundary at a point is a discriminantly informative

feature, and the effectiveness of the vector is roughly proportional to the area of

the decision boundary which has the same normal vector. Now we can define a

DECISION BOUNDARY FEATURE MATRIX which is very useful to predict the

intrinsic discriminant dimension and find the necessary feature vectors.

Definition 3.6 The decision boundary feature matrix (DBFM): Let N(X) be the

unit normal vector to the decision boundary at a point X on the decision

boundary for a given pattern classification problem. Then the decision

boundary feature matrix T.[_SFM is defined as

1 _'N(X)Nt(X)p(X)d X

where p(X) is a probability density function, K= fp(X)dX, and S is the
S

decision boundary, and the integral is performed over the decision boundary.

We will show some examples of the decision boundary feature matrices next.

Even though the examples are in 2-dimensional space, the concepts can be

easily extended to higher dimensional spaces. In all examples, a Gaussian

Maximum Likelihood classifier is assumed.

0 o
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Example 3.1 The mean vectors and covariance matrices of two classes are

given as follows:

[;] r, o. l r, o. IM1= , Zl =LO.5 1 J M2= ' _=L0.5 1 J

P(_l) = P(o_)= 0.5

These distributions are shown in Figure 3.7 as "ellipses of concentration." In a

two-class, two-dimensional pattern classification problem, if the covariance

matrices are the same, the decision boundary will be a straight line and the

intrinsic discriminant dimension is one. This suggests that the vector normal to

the decision boundary at any point is the same. And the decision boundary

feature matrix will be given by

_DBFM=_ N(X)Nt(X)p(X) dx= NN t fp(X)dX=NN t
S

_-"DBFM = _2 ('1'1)t _ (-1,1) = _" -1

Rank(T'.DBFM ) = 1

It is noted that the rank of the decision boundary feature matrix is one which is

equal to the intrinsic discriminant dimension and the eigenvector corresponding

to the non-zero eigenvalue is the desired feature vector which gives the same

classification accuracy as in the original 2-dimensional space.
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OJ

o-,

1.4.

dary

Feature 1

Figure 3.7 An example where the covariance matrices of two classes are
the same and the decision boundary is a straight line.

Example 3.2 The mean vectors and covariance matrices of two classes are

given as follows:

M1=[551, _1=I30] M2=I51, _.,2=I(_ 101

P(O)l) = P(o)2) = 0.5

The distributions of the two classes are shown in Figure 3.8 as "ellipses of

concentration." In this example, the decision boundary is a circle and symmetric,
1

and K--P(X) is a constant given by 1 where r is the radius of the circle. The2_r

decision boundary feature matrix will be given by

_,OBFM

2/1;

= _ 21-_[rcose sine]t[cose sine] r de
0

2_

1 _ FCOSeCOS@ cosesine]=_ Lsinecose sinesine.] de
0

1 1=;[o o]
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Rank(T'OBFM ) = 2

From the distribution of data, it is seen that two features are needed to achieve

the same classification accuracy as in the original space. This means that the

intrinsic discriminant dimension is 2 in this case. It is noted that the rank of the

decision boundary feature matrix is also 2, which is equivalent to the intrinsic

discriminant dimension.

O,I

==
-1

¢1
LL

Decision
boundary

Feature 1

Figure 3.8 The decision boundary feature matrix for equal means and
different covariances.

In a similar way, we define an EFFECTIVE DECISION BOUNDARY

FEATURE MATRIX. The effective decision boundary feature matrix is the same

as the decision boundary feature matrix except that only the effective decision

boundary instead of the entire decision boundary is considered.

Definition 3.7 The effective decision boundary feature matrix (EDBFM): Let

N(X) be the unit normal vector to the decision boundary at a point X on

the effective decision boundary for a given pattern classification problem.

Then the effective decision boundary feature matrix T'-EDBF M iS defined as

1
_EDBFM= _" JN (X)Nt(X)p(X)dX

S--

3 -
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is a probability density function, K'= fp(X)dX, and S° is thewhere p(X)
S'

effective decision boundary as defined in Definition 3.4, and the integral

is performed over the effective decision boundary.

3.5.3 Properties of Decision Boundary Feature Matrix

In this section, some properties of the decision boundary feature matrix

will be discussed.

Property 3.1 The decision boundary feature matrix is a real, symmetric

matrix.

Proof: It can be shown that T_DBFM=(T-DBFM)t as follows:

1 _N(X)Nt(X)p(X)dX}t( BFM)t =

1

= _- _'{N(X)Nt(x)}tp(X)dX

1

=K S/N(X)Nt(X)p(X)dX

=,T-.,DBFM

Property 3.2 The eigenvectors of the decision boundary feature matrix are

orthogonal.

Proof: Since the decision boundary feature matrix is a real symmetric matrix, the

eigenvectors of the decision boundary feature matrix are orthogonal (Cullen

1972).
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Property 3.3 The decision boundary feature matrix is positive semi-definite.

Proof: Let N be a real column vector. Then the matrix, NN t, is positive semi-

definite (Cullen 1972). Let _. be an eigenvalue of _'DBFM and q_0 an associated

eigenvector. Then

And

_'DBFM (p==_0

q_tT_.OBFM q_=q_t%_

1 ,,tfl fN(X)Nt(X)p(X)dX}q)
=-_, t_ S

1 1 fq_tN(X)Nt(X)_0p(X)d x > 0= s

where q_tN(X)Nt(X)q_ > 0 for any X,

p(X) > 0 since p(X) is a probability density function,

K= fp(X)dX > 0,
S

q_tq_> 0.

Thus, the decision boundary feature matrix is also positive semi-definite.

Property 3.4 The decision boundary feature matrix of the whole decision

boundary can be expressed as a summation of the decision boundary

feature matrices calculated from segments of the whole decision

boundary if the segments are mutually exclusive and exhaustive.

Proof: Let S be the whole decision boundary. Let SIuS2=S and S1_S2=O.

Then
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1 fN(X)Nt(X)p(X)dXZOBFM=
S

1
1 j'N(X)Nt(X)p(X)d x_{I_._N(X,NLX)p,X,dX + _

S 1 $2

= T-DBFM+

Si
where _DBFM is the decision boundary feature matrix calculated from the

segment decision boundary S i.

Figure 3.9 shows an illustration. The decision boundary of Figure 3.9 is a circle.

Let Sl be the upper half of the circle and S 2 the lower half of the circle. Then the

decision boundary feature matrix can be expressed as a summation of the

decision boundary feature matrix calculated from S 1 and the decision boundary

feature matrix calculated from S 2.

O4

I1

Feature 1

Figure 3.9

S: decision boundary

The decision boundary feature matrix can be calculated by

segments.

From Property 3.4, we can calculate the decision boundary feature matrix

of a multiclass problem by summing up the decision boundary feature matrices

of each pair of classes. Figure 3.10 shows an example. The decision boundary

feature matrix of the 3-class problem can be calculated as follows:

6 o
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'_'OBFM 'sS=_ N(X)Nt(X)P( x)dx

1 j'N(X)Nt(X)p(X)dx +
=Ks12

1 SN(X)Nt(X)p(X)dX+R"
S23

5"S12 + 5_$13 + S23
= --DBFM "DBFM Y'DSFM

1
-_ fN(X)Nt(X)p(X)dX

$13

Figure 3.10

S 2

S13 S23

The decision boundary feature matrix of a multiclass problem can
be calculated from the decision boundary feature matrices from

each pair of classes.

3.5.4 Decision Boundary Feature Matrix for Finding the Intrinsic Discriminant

Dimension and Feature Vectors

From the way the decision boundary feature matrix is defined and from

the examples, one might suspect that the rank of the decision boundary feature

matrix will be the intrinsic discriminant dimension, and the eigenvectors of the

decision boundary feature matrix of a pattern recognition problem

corresponding to non-zero eigenvalues are the required feature vectors to

achieve the same classification accuracy as in the original space. In this regard
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we state the following two theorems which are useful in predicting the intrinsic

discriminant dimension of a pattern classification problem and finding the

feature vectors.

Theorem 3.2 The rank of the decision boundary feature matrix 7-,DBFM

(Definition 3.6) of a pattern classification problem will be the intrinsic

discriminant dimension (Definition 3.5) of the pattern classification

problem.

Proof: Let X be an observation in the N-dimensional Euclidean space E N under

the hypothesis Hi: X e o)i {i = 1..... J} where J is the number of classes. Let T-DBFM

be the decision boundary feature matrix as defined in Definition 3.6. Suppose

that

rank(T.OBFM) = M < N.

Let {_1, _2 .... (_M} be the eigenvectors of _DBFM corresponding to non-zero

eigenvalues. Then a vector normal to the decision boundary at any point on

decision boundary can be represented by a linear combination of _i, i=l,..,M. In

other words, for any normal vector V N to the decision boundary

M

V N = _/__ai(_i
i=1

Since any linearly independent set of vectors from a finite dimensional vector

space can be extended to a basis for the vector space, we can expand {$1, (I)2....

(1)M}tO form a basis for the N-dimension Euclidean space. Let {tp1, (1)2.... (1)M,(I)M.I,--,

_N} be such a basis. Without loss of generality, we can assume {(lh, _2 .... (I)M,

(I)M+I.... SN} is an orthonormal basis. One can always find an orthonormal basis

for a vector space using the Gram-Schmidt procedure (Cullen 1972). Since the

basis is assumed to be orthonormal, it can be easily seen that the vectors {(I)M+I,

_)M+2 .... _N}, are orthogonal to any vector VN normal to the decision boundary.

This is because for i = M+I ,..,N
M

(t)IVN = t a_)i,T_,k(_k
k=l

8 o
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k-1

t
since (:l)i_k= 0 if i;_k

Therefore, since the vectors {_M+I, _M+2 .... _N} are orthogonal to any vector

normal to the decision boundary, according to Lemma.1, the vectors {$M÷1,

(I)M+2,.., _N} are discriminantly redundant. Therefore the number of discriminantly

redundant features is N - M, and the intrinsic discriminant dimension is M which

is the rank of decision boundary feature matrix T.DBFM.
Q.E.D.

It is noted that we did not make any assumption on the number of classes

in proving Theorem 3.2. In other words, Theorem 3.2 holds for any number of

classes. From Theorem 3.2, we can derive the following theorem which is useful

to find the feature vectors needed to achieve the same classification accuracy

as in the original space.

Theorem 3.3 The eigenvectors of the decision boundary feature matrix of a

pattern recognition problem corresponding to non-zero eigenvalues are

the feature vectors needed to achieve the same classification accuracy

as in the original space for the pattern recognition problem.

Proof: In the proof of Theorem 3.2, it was shown that the eigenvectors of T_DBFM

corresponding to non-zero eigenvalues are the only discriminantly informative

feature vectors. Thus by retaining the eigenvectors of T-DBFM corresponding to

non-zero eigenvalues, it is possible to achieve the same classification accuracy

as in the original space.
Q.E.D.

3.5.5 Procedure to Find the Decision Boundary Feature Matrix

Assuming a Gaussian ML classifier is used, the decision boundary will

be a quadratic surface if the covariance matrices are different. In this case, the

rank of the decision boundary feature matrix will be the same as the dimension

of the original space except for some special cases. However, in practice, only a

small portion of the decision boundary is significant. Therefore if the decision

boundary feature matrix is estimated using only the significant portion of the
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decision boundary or the effective decision boundary, the rank of the decision

boundary feature matrix, equivalently the number of features, can be reduced

substantially while achieving about the same classification accuracy.

More specifically, the significance of any portion of the decision boundary

is related to how much accuracy can be achieved by utilizing that portion of the

decision boundary. Consider the case of Figure 3.11 which shows the two

regions which contain 99.9% of each Gaussianly distributed class, along with

the decision boundary and the effective decision boundary of 99.9%. Although

in this example the threshold probability, Pthreshold, is set to 99.9% arbitrarily, it

can be set to any value depending on the application (See Definition 3.4). If

only the effective decision boundary, which is displayed in bold, is retained, it is

still possible to classify 99.9% of data from class o)1 the same as if the whole

decision boundary had been used, since the effective decision boundary

together with the boundary of the region which contains 99.9% of class 0)1 can

divide the data of class 0}1 into two groups in the same manner as if the whole

decision boundary is used; less than 0.1% of data from class 0}1 may be

classified differently.

Therefore, for the case of Figure 3.11, the effective decision boundary

displayed as a bold line plays a significant role in discriminating between the

classes, while the part of the decision boundary displayed as a non-bold line

does not contribute much in discriminating between the classes. On the other

hand, other portions of the decision boundary, displayed as a dotted line, would

be very rarely used.

It is noted, however, that even though only the effective decision

boundary is used for feature extraction, this does not mean that the portion

outside of the effective regions does not have a decision boundary. The actual

decision boundary is approximated by the extension of the effective decision

boundary as shown in Figure 3.11. As shall be seen, feature extraction based

on the effective decision boundary instead of the complete decision boundary

will result in fewer features while achieving nearly the same classification

accuracy.

0



3 Decision Boundary Feature Extraction

#

•#..All

Figure 3.1 1

s

s S

;! Effective decision

/ JJ:oooooa 
_• .._" ///'

• .,. Effective regions
• I. j , o

• "Is __._ .......... ,"''J/ Decision boundary

• New decision boundary represented by
the effective decision boundary outside

the effective regions

An example of a decision boundary and an effective

decision boundary.

Next we propose a procedure for calculating the effective decision

boundary feature matrix numerically.

Numerical Procedure to Find the Effective Decision Boundary Feature Matrix

(2 pattern classes)

o Let 1vii and Ei be the estimated mean and covariance of class coi. Classify

the training samples using full dimensionality. Apply a chi-square threshold

test to the correctly classified training samples of each class and delete

outliers. In other words, for class coi, retain X only if

(X - l_i)'_,i-l(X - ]_i) < Rtl

In the following STEPs, only correctly classified training samples which

passed the chi-square threshold test will be used. Let {Xl,X2 ..... X[. 1} be such

training samples of class co1 and {Y1,Y2 ..... Y_.:} be such training samples of

class (02.
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. Apply a chi-square threshold test of class 0)1 to the samples of class 0)2 and

retain Yj only if

(Yj - ]_l)' _-1 (yj _ ]_1) < Rt2

If the number of the samples of class 032 which pass the chi-square threshold

test is less than Lmi n (see below), retain the Lmi n samples of class 0)2 which

gives the smallest values.

3. For X i of class 0)1, find the nearest sample of class o}2 retained in STEP 2.

4. Find the point Pi where the straight line connecting the pair of samples found

in STEP 3 meets the decision boundary.

5. Find the unit normal vector, N i, to the decision boundary at the point Pi found

in STEP 4.

6. By repeating STEP 3 through STEP 5 for X i, i=l,..,L 1, L 1 unit normal vectors

will be calculated. From the normal vectors, calculate an estimate of the

effective decision boundary feature matrix (T-I_DBFM) from class o)1 as follows:

.

Y_DB_ - 1--'-_' NiN_
- LI .z._

I

Re oeat STEP 2 through STEP 6 forclass 03m

Calculate an estimate of the final effective decision boundary feature matrix

as follows:

1 1
_EDBFM = 2" ( _EDBFM +:_-'_DBFM )

The chi-square threshold test in STEP 1 is necessary to eliminate

outliers. Otherwise, outliers may give a false decision boundary when classes

are well separable. The chi-square threshold test to the other class in STEP 2 is

necessary to concentrate on effective decision boundary (Definition 4).

Otherwise, the decision boundary feature matrix may be calculated from an

insignificant portion of decision boundary, resulting in ineffective features. In the

experiments, Lmi n in STEP 2 is set to 5 and Rtl is chosen such that
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Pr{XI(X - l_i)'_l( X- 1Vii) < R,1} = 0.95, i=1,2, and Rtl = Rt2

The threshold probability is taken as 0.95. In an ideal case assuming a

Gaussian distribution, the threshold probability can be larger, i.e., 0.999.

However, for real data, if the threshold probability is set too large, some outliers

could be included, causing some inefficiency in calculating the decision

boundary feature matrix.

Figure 3.12 shows an illustration of the proposed procedure. For each

sample, the nearest sample classified as the other class is found and the two

samples are connected by a straight line. Then a vector normal to the decision

boundary is found at the point where the straight line connecting the two points

meets the decision boundary. From these normal vectors, _EDBFM is estimated.

Decision boundary _'

Figure 3.12 Illustration of the procedure to find the effective decision
boundary feature matrix numerically.

If we assume a Gaussian distribution for each class and the Gaussian ML

classifier is used, h(X) in equation (3.1) is given by

. P(XIo_I) _ InP(Xleo2)-InP(Xlcol)
h(X) = -mp(xlco2)

1 1 1
= _ (X - M1)tT-.,i1 (X - M 1) + _" Inl_.ll- E (X - i2)t_21 (X -- M 2)

The vector normal to the decision boundary at Xo is given by (See Appendix A)
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N= Vh(X)lx.xo =( Z;i1 - T-21)X + (Z21 M 2- ZilM1) (3.3)

If P1 and P2 are on different sides of decision boundary h(X) = t

assuming that the Gaussian ML classifier is used, the point X o where the line

connecting P1 and P2 passes through the decision boundary is given by

(Appendix A)

Xo=uV+ V o (3.4)

where Vo = P1

V = P2- P1
t - c'

u =--5-- if a = 0,

-b + _/b 2 - 4a{c' - t)
u = 2a and0<u<lifa_0,

a = lvt(_,l 1 - T_,;21)V,

b = Vot(_i 1 - _21)V - (Mt,_l 1 - Mt_il)V,

1
C'= _ v0t(T-; 1 - T,21)V0 - (Mtl_l 1 - M_T-21)Mo + C,

1
C = _" (MtI;ilM, - Mt_T-,2'M2 ) + 1 _r_

Equation (3.4) can be used to calculate the point on the decision boundary from

two samples classified differently and equation (3.3) can be used to calculate a

normal vector to the decision boundary.

3.5.6 Decision Boundary Feature Matrix for Multiclass Problem

If there are more than two classes, the total decision boundary feature

matrix can be defined as the sum of the decision boundary feature matrices of

each pair of classes. If prior probabilities are available, the summation can be

weighted. In other words, if there are M classes, the total decision boundary

feature matrix can be defined as
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M M
T.DBFM = _ _, P(O)i)P(o)I)Z_)BFM (3.5)

i j,j=i

where _iJDBFMis the decision boundary feature matrix between

class _i and class o)i and P(o_i) is the prior probability of class coi if

available. Otherwise let P((oi)=l/M.

It is noted that Theorem 3.2 and Theorem 3.3 still hold for the multiclass case

and the eigenvectors of the total decision boundary feature matrix

corresponding to non-zero eigenvalues are the necessary feature vectors to

achieve the same classification accuracy as in the original space. In practice,

the total effective decision boundary feature matrix can be calculated by

repeating the procedure for each pair of classes.

3.5.7 Eliminating Redundancy in Multiclass Problem

The total decision boundary feature matrix defined in equation (3.5), can

be made more efficient. Consider the following example situation. Suppose

Table 3.1 shows eigenvalues for the 2 pattern class problem of Table 3.6. Table

3.1 also shows proportions of the eigenvalues, classification accuracies, and

normalized classification accuracies obtained by dividing the classification

accuracies by the classification accuracy obtained using all features. With just

one feature, the classification accuracy is 93.4% which is 97.9% of the

classification accuracy obtained using all features. Thus, in this 2 class problem,

if this level of accuracy is deemed adequate, just one feature is necessary to be

included in calculating the total decision boundary feature matrix. The other 19

features contributes little in improving classification accuracy and can be

eliminated in calculating the total decision boundary feature matrix. In addition,

feature vectors from other pairs of classes will improve the classification

accuracy.
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Table 3.1 Eigenvalues and classification accuracies of the 2 class problem.

Eigenvalues

1 0.994 49.6
2 0.547
3 0.167
4 0.133
5 0.066
6 0.041
7 O.020 1.0
8 0.012 0.6
9 0.008
10 0.007 0.3
11 0.005 0.2
12 0.001 0.1
13 0.001 0.0
14 0.001 0.0
15 0.0
16
17
18
19
20

0.000

0.000 0.0

0.000 0.0
0.000 0.0

0.000 0.0

0.000 0.0

Proportion of Classification
Eigenvalues Accuracy

(%) (%)

93.4

Normalized
Classification
Accuracy (%)

97.9

94.9

27.3 94.3 98.8
8.3 94.4 99.0
6.6 95.0 99.6
3.3 95.1 99.7
2.1 94.9 99,5

99.5
94.8 99.4

0.4 95.0 99.6
95.3 99.9
95.3 99.9
95.7 100.3
95.5 100.1
95.4 100.0
95.3 99.9
95.6 100.2
95.5 100.1
95.5 100.1
95.4 100.0
95.4 100.0

To eliminate such redundancy in multiclass problems, we define the

decision boundary feature matrix of Pt (T'DBFM(Pt)) as follows:

Definition 3.8 Let Lt be the number of eigenvectors corresponding to largest

eigenvalues needed to obtain Pt of the classification accuracy obtained

using all features. Then the decision boundary feature matrix of Pt

(TOBFM(Pt)) iS defined as

Lt

ZDBFM(_) = _/_,_Li(Pi(It
i-1

where _,i and (Pi are eigenvalues and eigenvectors of the decision

boundary feature matrix.

The total decision boundary feature matrix of Pt in a multiclass problem can be

defined as

M M
ij

TDBFM(Pt) = _ _ P(Coi)P(o')j)TOBFM(Pt)

i=1 j-1 j_i
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ij
where T-,DBFM(Pt) is the decision boundary feature matrix of Pt

between class e) i and class (t)j and P((oi) is the prior probability of

class coi if available. Otherwise let P(_)=I/M.

From Definition 3.8, we can calculate the decision boundary feature matrix of

0.95 of Table 3.1 as follows:

The classification accuracy using full dimensionality (assume it is 20) is

95.4%. The number of features needed to achieve a classification accuracy of

92.5%(=95.4*0.95) is 1. Therefore, the decision boundary feature matrix of

0.95 of Table 3.1 is given by

1

_DBFM(0.95) = _ _'iq)iq)l = _'1_1(pt1
i=1

where ;Li's are eigenvalues of ,T-,DBFM sorted in descending order and (Pi's are

the corresponding eigenvectors.

Figure 3.13 shows a performance comparison for various values of Pt. By

eliminating feature vectors which contribute little to improvement of the

classification accuracy, it is possible to improve classification accuracy up to

1.5% in this example. The experiment showed Pt between 0.95 and 0.97 would

be reasonable.
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Figure 3.13 Performance comparison for various Pt s.

10

3.6 Experiments and Results

3.6.1 An experiment with generated data

To evaluate closely how the proposed algorithm performs under various

circumstances, tests are conducted on data generated with given statistics

assuming Gaussian distributions. In all examples, a Gaussian ML classifier is

used and the same data are used for training and test. In each example, the

Foley & Sammon method (Foley and Sammon 1975) and the Fukunaga &

Koontz method (Fukunaga and Koontz 1970) are discussed. In particular,
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classification accuracies of the decision boundary feature extraction method

and the Foley & Sammon method are compared.

Example 3.3 In this example, data are generated for the following statistics.

P(m )= = 0.5

300 samples are generated for each class and all samples are used for training

and test. Since the covariance matrices are the same, it can be easily seen that

the decision boundary will be a straight line and just one feature is needed to

achieve the same classification accuracy as in the original space. The

eigenvalues ;Liand the eigenvectors (I)i of T.EDBFM are calculated as follows:

_-0.71] ['0.70]_'1 = 0.99995, _2 = 0.00005 ¢1=L'0.70 ' ¢2= L0.71]

Since one eigenvalue is significantly larger than the other, it can be said that

the rank of '_'EDBFM is 1. That means only one feature is needed to achieve the

same classification accuracy as in the original space. Considering the statistics

of the two classes, the rank of T-EDBF M gives the correct number of features to

achieve the same classification accuracy as in the original space. Figure 3.14

shows the distribution of the generated data and the decision boundary found

by the proposed procedure. Since class mean differences are dominant in this

example, the Foley & Sammon method will also work well. However, the

Fukunaga & Koontz method will fail to find the correct feature vector. Table 3.2

shows the classification accuracies of Decision Boundary Feature Extraction

and Foley & Sammon method. With two features, the classification accuracy is

95.8% and both methods achieve the same accuracy with just one feature.

Table 3.2 Classification accuracies of Decision Boundary Feature Extraction
and the Foley & Sammon method of Example 3.3.

No. Features Decision Boundary Foley & Sammon
Feature Extraction Method

1 9s.8tO/ol
2 9s.8(%)
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Figure 3.14
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The distribution of data for the two classes in Example 3.3. The

decision boundary, found by the proposed algorithm, is also
shown.

Example 3.4 In this example, data are generated with the following statistics.

M1=[0"0011,T_,l=[ 3 01 M2=['0()011,T_.,2=[3 01

P(col) = P(o_z) = 0.5

300 samples are generated for each class and all samples are used for training

and test. In this case, there is almost no difference in the mean vectors and

there is no correlation between the features for each class. The variance of

feature 1 of class (01 is equal to that of class (o2 while the variance of feature 2 of

class (01 is larger than that of class 0)2. Thus the decision boundary will consist of

hyperbolas, and two features are needed to achieve the same classification

accuracy as in the original space. However, the effective decision boundary

could be approximated by a straight line without introducing significant error.

Figure 3.15 shows the distribution of the generated data and the decision

boundary obtained by the proposed procedure. The eigenvalues _-i and the

eigenvectors ¢i of T_EDBF M are calculated as follows:
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FO.O61 r-'i.OOl
_1 = 0.92421, X2 = 0.07579 t_l = L1.ooJ, $2 = L0.06 J

Since the rank of _EDBFM is 2, tWO features are required to achieve the same

classification accuracy as in the original space. However, _.2is considerably

smaller than X1, even though X2 is not negligible. Therefore, nearly the same

classification accuracy could be achieved with just one feature.

Since there is a very small difference in the mean vectors in this example, the

Foley & Sammon method will fail to find the correct feature vector. On the other

hand, the Fukunaga & Koontz method will find the correct feature vector. Table

3.3 shows classification accuracies. Decision Boundary Feature Extraction

achieves the same accuracy with one feature as can be obtained with two

features while the Foley & Sammon method fails to find the right feature in this

example.

Figure 3.15
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Distribution of data from the two classes in Example 3.4. The
decision boundary found by the proposed algorithm is also

shown.
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Table 3.3 Classification accuracies of Decision Boundary Feature Extraction
and the Foley & Sammon method of Example 3.4.

No. Features Decision Boundary
FeatureExtraction

1
2

Foley & Sammon
Method

61.0 (%) 52.5 (%)
61.0 (%) 61.0 (%)

Example 3.5 In this example, we generate data for the following statistics.

[i] [i°i] [i] [i°i]M 1 = , T-,1= , M2 = ,/.,2 =
0 0

P((01) = P(oJ1) = 0.5

200 samples are generated for each class and all samples are used for training

and test. In this case, there is no difference in the mean vectors and there are

variance differences in only two features. It can be seen that the decision

boundary will be a right circular cylindrical surface of infinite height and just two

features are needed to achieve the same classification accuracy as in the

original space. Eigenvalues _'i and eigenvectors (_i of 7-,EDBF M are calculated as

follows:

k 1 = 0.57581, _.2= 0.42032, _,3= 0.00387

F0.861 r0.491 r-0.211
=/-050/, =/0.84/, =/-0.18/

LO01J Lo.21J Lo.98J

Rank(T.EDBFM) -- 2

Since the rank of T-EDBF M is roughly 2, it can be said that two features are

required to achieve the same classification accuracy as in the original space,

which agrees with the data. Since there is no difference in the mean vectors in

this example, the Foley & Sammon method will fail to find the correct feature

vectors. On the other hand, the Fukunaga & Koontz method will find the correct

feature vector. Table 3.4 shows the classification accuracies. Decision

Boundary Feature Extraction finds the two effective feature vectors, achieving

the same classification accuracy as in the original space.
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Table 3.4 Classification accuracies of Decision Boundary Feature Extraction
and the Foley & Sammon method of Example 5.

No. Features

3

Decision Boundary
Feature Extraction

Foley & Sammon
Method

65.0 (%) 62.3 (%)

70.0 (%) 60.5 (%)
70.0 (%) 70.0 (%)

From the experiments with generated data for given statistics, it is noted

that the proposed feature extraction algorithm based on the decision boundary

performs well even if there is no mean difference (Examples 3.4, 3.5) or no

covariance difference (Example 3.3) without any deterioration. On the other

hand, the Foley & Sammon method fails if there is no mean difference

(Examples 3.4, 3.5) and the Fukunaga & Koontz method would fail if there is no

covariance difference (Example 3.3) or significant mean difference (Foley and

Sammon 1975). In Chapter 5, the decision boundary feature extraction

algorithm is applied to a 3-class problem (generated data).

3.6.2 Experiments with real data

3.6.2.1 FSS Data and Preprocessing

In the following experiments, tests are conducted using multispectral data

which was collected as a part of the LACIE remote sensing program (Biehl et al.

1982) and major parameters are shown in Table 3.5.

Table 3.5 Parameters of Field Spectrometer System.

Number of Bands 60

Spectral Coverage 0.4 - 2.4 I.u'n
Altitude 60 m

IFOV(around) 25 m

If estimation of statistics is not accurate, using more features does not

necessarily increase classification accuracy. The so-called Hughes

phenomenon occurs in practice when the number of training samples is not

enough for the number of features (Swain and Davis 1978). Figure 3.16 shows
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a graph of classification accuracy vs. number of features. There are 6 classes

and Table 8.1 in Chapter 8 provides information on the 6 classes. The original

60 dimensional data are reduced to different numbers of feature sets using a

simple band combination procedure which will be referred as Uniform Feature

Design. For example, if the number of features is to be reduced from 60 to 30,

every two consecutive bands are combined to form a new feature. In other

words, the i-th feature of a new feature set is given by

Yi = X2*i-1 + X2*i

Where the number of features desired is not evenly divisible into 60, the nearest

integer number of bands is used. For example, for 9 features, the first 6 original

bands were combined to create the first feature, then the next 7 bands were

combined to create the next feature, and so on.

In the test, 100 training samples are used to estimate the statistics and

the rest are used for test data. As can be seen, the classification accuracy

peaked at about 29 features. After 29 features, adding more features decreases

the classification accuracy. In fact, the classification accuracy is saturated at

about 17-20 features. As a result, in the following experiments using the FSS

data, the original 60 dimensional data are reduced to 17--20 dimensional data

using Uniform Feature Design. Then various feature extraction/selection

methods are applied to the reduced data set.
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Figure 3.16 Classification accuracy vs. number of features.

3.6.2.2 Experiments and Results

Along with the proposed Decision Boundary Feature Extraction, five

other feature selection/extraction algorithms, Uniform Feature Design, Principal

Component Analysis (the Karhunen-Loeve transformation) (Richards 1986),

Canonical Analysis (Richards 1986), feature selection using a statistical

distance measure, and the Foley & Sammon method (Foley and Sammon

1975) are tested to evaluate and compare the performance of the proposed

algorithm. In the feature selection using a statistical distance measure,

Bhattacharyya distance (Fukunaga 1990) is used. Feature selection using the

statistical distance measure will be referred as Statistical Separability. The

Foley & Sammon method is based on the generalized Fisher criterion (Foley

and Sammon 1975). For a two class problem, the Foley & Sammon method is

used for comparison. If there are more than 2 classes, Canonical Analysis is

used for comparison.
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In the following test, two classes are chosen from the data collected at

Finney Co. KS. in May 3, 1977. Table 3.6 shows the number of samples in each

of the two classes. In this test, the covariance matrices and mean vectors are

estimated using 400 randomly chosen samples from each class and the rest of

the data are used for test. Figure 3.17 shows the mean graph of the two classes.

There is a relatively large difference in the mean vectors between the two

classes.

Table 3.6 Class description of data collected at Finney Co. KS.

! SPECIES i N°'°fSample II
WINTER WHEAT 691

UNKNOWN CROPS 619
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Figure 3.17 Mean graph of the two classes of Table 3.6.
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Figure3.18 Performance comparison of Uniform Feature, Principal
Component Analysis, the Foley & Sammon method, Statistical

Separability, and Decision Boundary Feature Extraction.

H.

6 18 20

Figure 3.18 shows the performance comparison of test data of the 5

feature selection/extraction algorithms for different numbers of features. With 20

features, the classification accuracy is about 94.1%. Decision Boundary Feature

Extraction and the Foley & Sammon method achieve approximately the

maximum classification accuracy with just one feature while the other feature

selection/extraction algorithms need 7-8 features to achieve about the same

classification accuracy.
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Table 3.7 shows the eigenvalues of the decision boundary feature matrix

along with proportions and accumulations. The eigenvalues are sorted in the

decreasing order. The classification accuracies obtained using the

corresponding eigenvectors are also shown along with the normalized

classification accuracies obtained by dividing the classification accuracies by

the classification accuracy obtained using all features. The rank of the decision

boundary feature matrix(T.DBFM ) must be decided. Although it is relatively easy to

decide the rank for low dimensional generated data, it becomes less obvious for

high dimensional real data. One may add eigenvalues until the accumulation

exceeds 95% of the total sum and set that number of the eigenvalues as the

rank of the T, OBFM. Defined in this way, the rank of the T-DBFM would be 5.

Alternatively, one may retain the eigenvalues greater than one tenth of the

largest eigenvalue. In this way, the rank of the T,DBFM would be 4. We will

discuss more about this problem later.

Table 3.7 Eigenvalues of the Decision Boundary Feature Matrix of the 2
classes of Table 3.6 along with proportions and accumulations.
Ev.:Eigenvalue, Pro. Ev.:Proportion of Eigenvalue, Acc. Ev.:
Accumulation of Eigenvalues, CI. Ac.: Classification Accuracy,
N. CI. Ac.:Normalized Classification Accuracy.

! I Ev. I Pro. Ev. Acc. Ev, CI. Ac. N. CI.A¢.I ol I (%)
1 0.994 49.6 49.6 93.4 97.9

2 0.547 27.3 77,0 94.3 98.8
3 0.167 8.3 85.3 94.4 99.0
4 0.133 6.6 91.9 95.0 99.6

5 0.066 3.3 95.2 95.1 99.7
6 0.041 2.1 97.3 94.9 99.5

7 0.020 1.0 98.3 94.9 99.5
8 0.012 0.6 98.8 94.8 99.4

9 0.008 0.4 99.2 95.0 99.6
10 0.007 0.3 99.6 95.3 99.9
11 0.005 0.2 99.8 95.3 99.9

12 0.001 0.1 99.9 95.7 100.3
13 0.001 0.0 99.9 95.5 100.1

14 0.001 0.0 100.0 95.4 100.0
15 0.000 0.0 100.0 95.3 99.9
16 0.000 0.0 100.0 95.6 100.2
17 0.000 0.0 100.0 95.5 100.1

18 0.000 0.0 100.0 95.5 100.1

19 0.000 0.0 100.0 95.4 100.0

20 0.000 0.0 100.0 95.4 100.0

In the following test, two classes are chosen from the data collected at

Hand Co. SD. on May 15, 1978. Table 3.8 shows the number of samples in
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each of the two classes. Figure 3.19 shows the mean graph of the two classes.

As can be seen, the mean differences are relatively small. In this test, all data

are used for training and test since the number of available samples is very

limited.

Table 3.8 Class description of data collected at Hand Co. SD.

II SPECIES i No. of Sample iI
WINTER WHEAT 223
SPRING WHEAT 474
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Figure 3.19 Mean graph of the two classes of Table 3.8.

Figure 3.20 show the performance comparison of the 5 feature

selection/extraction algorithms for different numbers of features. With 20

features, the classification accuracy is 91.1%. In this case, the Foley & Sammon

method performs less well due to the small class mean difference. Statistical

Separability performs similarly. However, Decision Boundary Feature Extraction

out-performs all other methods. Decision Boundary Feature Extraction achieves

approximately 90% classification accuracy with 9 features while the other

feature selection/extraction algorithms need 15-18 features to achieve 90%

classification accuracy.
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Figure 3.20 Performance comparison of Uniform Feature, Principal
Component Analysis, Canonical Analysis, Statistical
Separability, and Decision Boundary Feature Extraction.

In the following test, 4 classes are chosen from the FSS data. Table 3.9

provides data on the 4 classes. Figure 3.21 shows the mean graph of the 4

classes. In this test, 300 randomly selected samples are used for training and

the rest are used for test.
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Table 3.9 Class description.

SPECIES DATE No. of Samples

Winter Wheat May 3, 1977 657

Unknown Crops May 3, 1977 678
Winter Wheat March 8, 1977 691

Unknown Crops March 8, 1977 619

U
0

0 10 20 30 40 50 60

Spectral Bands

Winter Wheat, May 3 1977
-----,,--- Unknown Crops, May 3 1977
----.o--- Winter Wheat, March 8 1977

Unknown Crops, March 8 1977

Figure 3.21 Mean graph of the two classes of Table 3.9.

Figure 3.22 shows the performance comparison of the 5 feature

selection/extraction algorithms for different numbers of features. Decision

Boundary Feature Extraction achieves approximately 90% classification

accuracy with 3 features while Canonical Analysis achieves about 87.5%

classification accuracy with 3 features. On the other hand, Statistical

Separability achieves about 87.5% with 5 features. Both Uniform Feature

Design and Principal Component Analysis perform poorly.
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Component Analysis, Canonical Analysis, Statistical
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In the following test, 4 classes are chosen from the data collected at

Hand Co. SD. on May 15, 1978. Table 3.10 shows the number of samples in

each of the 4 classes. Figure 3.23 shows the mean graph of the 4 classes. As

can be seen, the mean difference is relatively small among some classes. In

this test, all data are used for training and test.
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Table 3.10 Class description.

Species Date No. of Samples
Winter Wheat May 15, 1978 223

NativeGrass Pas May 15, 1978 196
Oats May 15, 1978 163

UnknownCrops May 15, 1978 253

3O
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UnknownCrops

Figure 3.23 Mean graph of the two classes of Table 3.10.

Figure 3.24 shows the performance comparison of the 5 feature

selection/extraction algorithms for different numbers of features. The

classification accuracy using 20 features is about 88%. In this case, Canonical

Analysis performs less well since class mean differences are relatively small.

The performance of Decision Boundary Feature Extraction is much better than

those of the other methods. Decision Boundary Feature Extraction achieves

approximately 87.5% classification accuracy with 11 features while the other

methods need 17-20 features to achieve about the same classification

accu racies.
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Figure 3.24 Performance comparison of Uniform Feature Design, Principal
Component Analysis, Canonical Analysis, Statistical
Separability, and Decision Boundary Feature Extraction.

In the following test, 4 classes are chosen from the data collected at

Hand Co. SD. on August 16, 1978. Table 3.11 shows the number of samples in

each of the 4 classes. Figure 3.25 shows the mean graph of the 4 classes. In

this test, 100 randomly selected samples are used for training and the rest are

used for test.
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Table 3.11 Class description.

SPECIES

Other Crops
Native Grass Pas

Oats
Summer Fallow

DATE No. of Samples

August 16_ 1978 199
August 16, 1978 212
August 16, 1978 165
August 16, 1978 216

4O

0
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Spectral Band

Other Crops
Native Grass Pas

" Oats

Summer Fallow

Figure 3.25 Mean graph of the two classes of Table 3.11.

Figure 3.26 show the performance comparison of the 5 feature

selection/extraction algorithms for different numbers of features. Decision

Boundary Feature Extraction achieves 95% classification accuracy with 4

features while the classification accuracy of Canonical Analysis with 3 features

is 93%. The performances of Uniform Feature Design and Principal Component

Analysis are poor compared with the other methods.
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Performance comparison of Uniform Feature, Principal
Component Analysis, Canonical Analysis, Statistical Separability,
and Decision Boundary Feature Extraction.

In the following test, 6 are classes chosen from the FSS data. Table 3.12

provides information on the 6 classes. Figure 3.27 shows the mean graph of the

6 classes. In this test, 300 samples are used for training and the rest are used

for test.
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Table 3.12 Class description of the multi-temporal 6 classes.

Date

770308
770626
771018
770503
770626
78o726

Location

Finney CO. KS.

Finney CO. KS.
Hand CO. SD.

Finney CO. KS.
Finney CO. KS.
Hand CO. SD.

Species
Winter Wheat

No. Sample
691

Winter Wheat 677
Winter Wheat 662

Sprin 9 Wheat

Winter Wheat 658
Summer Fallow 643

518

N--.,' .......llryl
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0 '
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Spectral Band

Winter Wheat 770308

Winter Wheat 770626

Winter Wheat 771018

Winter Wheat 770503

Summer Fallow

Spring Wheat

Figure 3.27 Mean graph of the two classes of Table 3.12.

Figure 3.28 shows the performance comparison of the 5 feature

selection/extraction algorithms for different numbers of features. The

classification accuracy using all features is 96.2%. Decision Boundary Feature

Extraction achieves 94.2% classification accuracy with 5 features while the

classification accuracy of Canonical Analysis with 5 features is 92.2%.

Statistical Separability needs 11 features to achieve 94.2%. The performances

of Uniform Feature Design and Principal Component Analysis are poor.
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Performance comparison of Uniform Feature, Principal
Component Analysis, Canonical Analysis, Statistical Separability,
and Decision Boundary Feature Extraction.

In the following test, 12 classes are chosen from the FSS data. Table

3.13 shows the number of samples in each of the 12 classes. The data is multi-

temporal.
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Table 3.13 Class description of the multi-temporal 12 classes.

Date

77O3O8
770626
771018
770503
770626
780726

: Location

Finney CO. KS.
Finney CO. KS.
Hand CO. SD.

Finney CO. KS.
Finney CO. KS.
Hand CO. SD.

780602 Hand CO. SD.
780515 Hand CO. SD.
780921 Hand CO. SD.
780816 Hand CO. SD.
780709 Hand CO. SD,
781026 Hand CO. SD.

Species
Winter Wheat

No. Sample
691

Winter Wheat 677

Winter Wheat
Winter Wheat

Summer Fallow

Sprincj Wheat
Sprincj Wheat
Sprincj Wheat
Sprincj Wheat
Sprincj Wheat
Sprincj Wheat
Spring Wheat

662
658
643
518
517
474
469
464
454
441

j//,

,,/!

E '

i

o

I I

!

Uniform Feature Design

Statistical Se _arability

Principal Component Analysis

Canonical Analysis

Decision Boundary Feature Extraction

2O2 4 6 8 10 12 14 16 18

Number of Features

Figure 3.29 Performance comparison, 12 pattern classes.
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Figure 3.29 show the performance comparison of the 5 feature

selection/extraction algorithms for different numbers of features. In this case,

Decision Boundary Feature Extraction and Canonical Analysis show

comparable performances, although Decision Boundary Feature Extraction

shows a little better performance than Canonical Analysis when more than 8

features are used. Statistical Separability shows a relatively good performance.

It is noted that, as more features are used, the performances of 5 feature

selection/extraction algorithms continue to improve.

In the next test, 40 classes are chosen from the FSS data. Table 3.14

provides information on the 40 classes. The data is multi-temporal. Figure 3.30

shows the performance comparison of the 5 feature selection/extraction

algorithms for different numbers of features. In this case, Canonical Analysis,

Statistical Separability and Decision Boundary Feature Extraction show

essentially equivalent performances. In addition, as more features are used, the

classification accuracies of the 5 feature selection/extraction algorithms

continue to improve, suggesting that, for a large number of classes, a large

number of features are also needed to discriminate between classes. In such a

large number of classes, the fast classification algorithm in Chapter 2 can be

employed.
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Table 3.14 Class description of the multi-temporal 40 classes.

Date J Location Species

770308 Finney Co. KS I Winter Wheat
770626 Finney Co. KS
771018 Hand Co. SD

770503 FinneyCo. KS
770626 Finneyco. KS
780726 Hand Co. SD
780602

780515
780921
780816
78O7O9
781026
760928
781026
771018
770920

Hand Co. SD
Hand Co. SD
Hand CO. SD
Hand Co. SD
Hand CO. SD
Hand Co. SD

Finney Co. KS
Hand Co. SD
Hand Co. SD
Hand Co.SD

Winter Wheat
Winter Wheat
Winter Wheat

Summer Falbw

Sprincj Wheat
Sprirx:jWheat
Sprin_] Wheat
Spring Wheat
Sprincj Wheat
SprincjWheat
SprincjWheat

Summer Fallow
Winter Wheat

Sprincj Wheat
Winter Wheat

No. of Data

691
677
662
658
643
518
517
474
469
464
454
441
414
393
313
292

780921 Hand CO.SD Winter Wheat 292

770308 Finney Co. KS Grain Sorcjhum 279
760928 Finney Co. KS Grain Sorcjhum 277
780602 Hand Co. SD Oats 259
780921 Hand Co. SD Pasture 225
780515 Hand Co. SD Winter Wheat 223
780726 Hand Co. SD Native Grass Pas 217

781026 Hand CO.SD Pasture 217
780816 Hand Co. SD Summer Fallow 216
780602 Hand CO.SD Native Grass Pas 214
780816 Hand CO. SD Native Grass Pas 212

770503 Finney Co. KS Summer Fallow 211
780726 Hand Co. SD Summer Fallow 204
780515 Hand CO. SD Native Grass Pas 196
780709 Hand CO.SD Summer Fallow 190
771018 Hand CO. SD Native Grass Pas 183
780921 Hand Co. SD Oats 182
780726 Hand Co. SD Oats 177
780709 Hand Co. SD Native Grass Pas 170
780816 Hand CO. SD Oats 165
780515 Hand CO. SD Oats 163
780709 Hand Co. SD Oats 163
771018 Hand CO. SD Oats 161
770626 Finney CO. KS Grain Sorghum 157
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Figure 3.30 Performance comparison, 40 pattern classes.
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3.6.3 Eigenvalues of Decision Boundary Feature Matrix and Classification

Accuracy

Theoretically, the eigenvectors of the decision boundary feature matrix

corresponding to non-zero eigenvalues will contribute to improvement of

classification accuracy. However, in practice, a threshold must be set to

determine the effectiveness of eigenvectors by the corresponding eigenvalues,

especially for high dimensional real data. Figure 3.31 shows the relationship

between the accumulation of eigenvalues of the decision boundary feature

matrix and the normalized classification accuracies obtained by dividing the
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classification accuracies by the classification accuracy obtained using all

features. There is a nearly linear relationship between normalized classification

accuracy and accumulation of eigenvalues up to x--95 where x is the

accumulation of eigenvalues. As the accumulation of eigenvalues approaches

100 percent, the linear relationship between the normalized classification

accuracy and the accumulation of eigenvalues does not hold; care must be

taken to set the threshold. More experiments are needed to obtain a better

understanding on the relationship between the normalized classification

accuracy and the accumulation of eigenvalues.
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Figure 3.31 Relationship between the normalized classification accuracy
(see text) and the accumulation of eigenvalues.

3.6.4 Decision Boundary Feature Extraction Method and the Foley & Sammon

Method in High Dimensional Space

The Foley & Sammon method will find an optimum feature set if there is a

reasonable class mean difference. However, the Foley & Sammon method fails

if the class mean differences are small. Another problem with the Foley &

Sammon method is that it does not take full advantage of information contained
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in the second order statistics. In the Foley & Sammon method (Foley and

Sammon 1975), a new feature vector d is found to maximize R(d)

(dr&) 2
R(d) = d'Ad

where d = column vector on which the data are projected;

A = M1- M2 and M_ is estimated mean of class wi.

A = cT. 1 + (1-c)Z; 2 and 0 < c < 1 and _ is estimated covariance of class coi.

By using the lumped covariance A in the criterion, the Foley & Sammon method

may lose some information contained in the difference of the class covariances.

In a high dimensional space, information contained in the second order

statistics play a significant role in discriminating between classes as shown in

Chapter 7.
lOO.

o= 60 -,_O_ '

= J LJ
20 Gaussian ML (Mean & Coy)

Gaussian ML (Coy only)
MinimumDistance Classifier

0 4 8 12 16 20 24 28

Number of Features

Figure 3.32 Performance comparison of the Gaussian ML classifier, the
Gaussian ML classifier with zero mean, and the minimum

distance classifier, tested on 40 multi-temporal classes.

Figure 3.32 shows an example. Three classifiers are tested on different

numbers of features. The first classifier is the Gaussian ML classifier which

utilizes both class mean and class cevariance information. In the second test,

the mean vectors of all classes were made zero and the Gaussian ML classifier

was applied to the zero mean data. In other words, the second classifier, which
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is a Gaussian ML classifier, is constrained to use only covariance differences

among classes. The third classifier is a conventional minimum distance

classifier (Richards 1986) which utilizes only the first order statistics. It is

noteworthy that the classifier using only first order statistics outperformed that

using only second order statistics when the dimensionality was low. However,

saturation soon set in, while performance of the classifier using only covariance

information improved as more features were used. The implication seems to be

that at low dimensionality the relative location of class distributions in feature

space dominates in importance, but at higher dimensionality, the relative shape

of the distribution dominates and in the long run is more significant to class

separation.

In order to evaluate the performances of the Foley & Sammon method

and Decision Boundary Feature Extraction for various mean differences in high

dimensional space, the following test is done. Two classes are selected from

FSS data. Table 3.15 shows the data on the two classes. In this test, all data are

used for training and test.

Table 3.15 Class description.

II SPECIES i N°'°fSample i Date Jl
1: WINTER WHEAT 658 May 3, 1977
2: WINTER WHEAT 393 Oct. 26, 1978

In the test, the mean of one class is moved relative to the mean of the other

class. And performances of the Foley & Sammon method and Decision

Boundary Feature Extraction are evaluated for various mean difference (0.5c <

A = [M1 - M2[ < 5_) where a is the average standard deviation, i.e.,

1 2 N i

where N is the number of features and ij is j-th feature standard deviation of

class _.

Figures 3.33 and 3.34 shows the performances of the Foley & Sammon method

and Decision Boundary Feature Extraction for various mean differences. First, it

is noted that even when there is small mean difference (A = 0.5_), classification
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accuracy can be almost 100%. This shows again that information contained in

the second order statistics plays a significant role in discriminating between

classes in high dimensional space. As can be seen in Figure 3.33, the Foley &

Sammon method fails to find a good feature set if the mean differences are

relatively small (A< 2.5o). After there are sufficient mean differences (A>3o), the

Foley and Sammon method begins to find a good feature set. On the other

hand, Decision Boundary Feature Extraction works well even when the mean

differences are small and finds a good feature set utilizing the covariance

differences as can be seen in Figure 3.34.

Figure 3.33
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Performance comparison of the Foley & Sammon method for
various mean differences.
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Figure 3.34 Performance comparison of Decision Boundary Feature
Extraction for various mean differences.

Table 3.16 shows the number of features needed to achieve over 97% of

the classification accuracy obtained using all features for the various mean

differences. If A_>4o, both methods find a proper feature sets, achieving over

97% of the classification accuracy obtained using all features with one feature.

For 3o<A_<3.50, Decision Boundary Feature Extraction achieves over 97% of

the classification accuracy obtained using all features with just one feature

while the Foley & Sammon method needs 4-5 features. When A<2.5o, the Foley

& Sammon method performs poorly while Decision Boundary Feature

Extraction achieves over 97% of the classification accuracy obtained using all

features with 2, 3, 5, 4, and 5 features for _=2.5a, 2a, 1.5a, a, and 0.5o,

respectively.
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Table 3.16 Number of features needed to achieve over 97% of the

classification accuracy obtained using all features for the various

mean differences. _=average standard deviation.

Mean Difference 0.50 lo 1.5o 2o 2.5a 30 3.5o: 4o 4.50 50

Foley & Sammon 19 18 14 11 9 5 4 1 1 1

Decision Boundary 5 4 5 3 2 1 1 1 1 1

3.7 Conclusion

We have proposed a new approach to feature extraction for classification

based on decision boundaries. We defined discriminantly redundant features

and discriminantly informative features for the sake of feature extraction for

classification and showed that the discriminantly redundant features and the

discriminantly informative features are related to the decision boundary. By

recognizing that normal vectors to the decision boundary are discriminantly

informative, the decision boundary feature matrix was defined using the normal

vectors. It was shown that the rank of the decision boundary feature matrix is

equal to the intrinsic discriminant dimension, and the eigenvectors of the

decision boundary feature matrix corresponding to non-zero eigenvalues are

discriminantly informative. We then proposed a procedure to calculate

empirically the decision boundary feature matrix.

Except for some special cases, the rank of decision boundary feature

matrix would be the same as the original dimension. However, it was noted that

in many cases only a small portion of the decision boundary is effective in

discriminating among pattern classes, and it was shown that it is possible to

reduce the number of features by utilizing the effective decision boundary rather

than the complete boundary.

The proposed feature extraction algorithm based on the decision

boundary has several desirable properties. The performance of the proposed

algorithm does not deteriorate even when there is little or no mean difference or

covariance difference. In addition, the proposed algorithm predicts the minimum

number of features required to achieve the same classification accuracy as in

the original space for a given problem. Experiments show that the proposed

feature extraction algorithm finds the right feature vectors even in cases where
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some previous algorithms fail to find them, and the performance of the proposed

algorithm compares favorably with that of several previous algorithms.

Developments with regard to sensors for Earth observation are moving in

the direction of providing much higher dimensional multispectral imagery than

is now possible. The HIRIS instrument now under development for the Earth

Observing System (EOS), for example, will generate image data in 192 spectral

bands simultaneously. In order to analyze data of this type, new techniques for

all aspects of data analysis will no doubt be required. The proposed algorithm

provides such a new and promising approach to feature extraction for

classification of such high dimensional data.

Even though the experiments are conducted using Gaussianly

distributed data or assuming a Gaussian distribution, all the developed

theorems hold for other distributions or to other decision rules as well. In

addition, it will be shown in the next chapter how the proposed algorithm can be

also applied for non-parametric classifiers if the decision boundary can be

found numerically.

9 -
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CHAPTER 4 DECISION BOUNDARY FEATURE EXTRACTION FOR NON-

PARAMETRIC CLASSIFICATION

4.1 Introduction

Although many authors have studied feature extraction for parametric

classifiers (Decell and Guseman 1979), relatively few algorithms are available

for non-parametric classifiers. The lack of practical feature extraction algorithms

for the non-parametric classifier is mainly due to the nature of a non-parametric

classifier. Without an assumption about the underlying density functions, feature

extraction for non-parametric classifiers is often practically not feasible or very

time consuming in many cases.

Some general feature extraction methods could be used for non-

parametric classifiers. Muasher and Landgrebe (1983) proposed a method to

base feature extraction on the statistics of the whole data set. Although this is

not optimal in a theoretical sense, it can be used even when underlying class

densities are unknown, or precise estimates of them are not possible. In

addition, such methods can be used for both parametric and non-parametric

Classifiers. Since, in many cases, it may be difficult to obtain enough training

samples, feature extraction methods based on the whole data set may be a

good and useful solution.

In discriminant analysis (Fukunaga 1990), a within-class scatter matrix

7_,w and a between-class scatter matrix T_b are used to formulate a criterion

function. A typical criterion is

J1 = tr(T-_ _b) (4.1)
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where T-.,wis the within-class scatter matrix and T.b is the between-class scatter

matrix as defined in Section 3.2. New feature vectors are selected to maximize

the criterion. Fukunaga proposed a non-parametric discriminant analysis which

is based on non-parametric extensions of commonly used scatter matrices

(Fukunaga and Mantock 1983). Patrick proposed a non-parametric feature

extraction process where a non-quadratic distance function defined between

classes is used to define the best linear subspace (Patrick and Fischer II 1969).

Features can be selected under a criterion which is related to the

probability of error. The Bhattacharyya distance is a measure of statistical

separability and is defined as follows (Fukunaga 1990):

f- 1'4

1_(2) = -In _| [ p(X/(o_)p(X/co2) ]
(4.2)

Although theoretically it is possible to calculate equation (4.2) for a non-

parametric classifier such as Parzen density estimator, in practice, it is

frequently not feasible due to a prohibitively long computing time, particularly for

high dimensional data.

Short and Fukunaga showed that, by problem localization, most pattern

recognition problems can be solved using simple parametric forms, while global

parametric solution may be untractable (Fukunaga and Short 1978). Short and

Fukunaga also proposed a feature extraction algorithm using problem

localization (Short and Fukunaga 1982). They considered feature extraction as

a mean-square estimation of the Bayes risk vector. The problem is simplified by

partitioning the distribution space into local subregions and performing a linear

estimation in each subregion.

Though the computation cost of non-parametric classifiers is often much

larger than that of parametric classifiers, there are some cases where the use of

non-parametric classifiers is desirable. For instance, if underlying densities are

unknown or problems involve complex densities which cannot be approximated

by the common parametric density functions, use of a non-parametric classifier

may be necessary. However, for high dimensional data and multi-source data,

the computation cost of non-parametric classifiers can be very large. As a result,
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there is a greater need for a practical feature extraction algorithm which can

take a full advantage of non-parametric classifiers which can define an arbitrary

decision boundary.

In this chapter, we extend the decision boundary feature extraction

method in Chapter 3 to non-parametric cases (Lee and Landgrebe 1991-1).

The method is based directly on the decision boundary. Instead of utilizing

distributions of data, we explore the decision boundary which the employed

classifier defines. It has been shown that all feature vectors which are helpful in

discriminating between classes can be obtained from the decision boundary

(Lee and Landgrebe 1991-2). Thus, by extracting features directly from the

decision boundary which a non-parametric classifier defines, one can fully

explore the advantage of the non-parametric classifier. Since the decision

boundary can not be expressed analytically in the non-parametric case, the

proposed algorithm finds points on the decision boundary numerically. From

these points, feature vectors are extracted. The proposed algorithm predicts the

minimum number of features to achieve the same classification accuracy as in

the original space while at the same time finding the needed feature vectors.

4.2 Decision Boundary Feature Extraction for Non-Parametric Classification

4.2.1 Effective Decision Boundary in Non-Parametric Classifiers

In Chapter 3, we defined the effective decision boundary for parametric

classifiers as follows (see Definition 3.4):

Definition 3.4 The effective decision boundary is defined as

{ X I h(X) = t, X _ R 1 or X _ R 2 }

Where R1 is the smallest region which contains a certain portion, ethreshold, of

class 0.)1 and R 2 iS the smallest region which contains a certain portion,

Pthreshold, of class 0)2.

Also, the effective decision boundary feature matrix was defined as follows:
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Definition 3.7 The effective decision boundary feature matrix (EDBFM): Let

N(X) be the unit normal vector to the decision boundary at a point X on

the effective decision boundary for a given pattern classification problem.

Then the effective decision boundary feature matrix 7_,EDBFM is defined as

T.EOBFu = k-_ (X)Nt(X)p(X)dX

where p(X) is a probability density function, K'= fp(X)dX, and S' is the

S'

effective decision boundary as defined in Definition 3.4, and the integral

is performed over the effective decision boundary.

In parametric classifiers, assuming Gaussian distributions, the above

definitions gives a proper meaning. However, in non-parametric classifiers, the

above definitions may not give a correct effective decision boundary when the

problem involves outliers or some special multimodal cases.

Decision Boundary 1

Decision Boundary 2

©
a small portion
of class (_2

Figure 4.1 Effective decision boundary in non-parametric classifiers.

Figure 4.1 illustrates such an problem. In Figure 4.1, Decision Boundary 1

should be the effective decision boundary to be considered in calculating the

decision boundary feature matrix. However, according the Definition 3.7,

Decision Boundary 2 will be more heavily weighted. As a result, inefficiency will

be introduced in the calculated decision boundary feature matrix.
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To overcome such a problem in non-parametric classifiers, the definition

of the effective decision boundary (Definition 3.4) needs to be generalized. We

can define the effective decision boundary as the portion of the whole decision

boundary which separates most of the data in the same way as the whole

decision boundary separates. To be more precise, we generalize the definition

of the effective decision boundary as follows:

Definition 4.1 The effective decision boundary of Pportion is defined as the

portion of the whole decision boundary which separates Pportion of the data

in the same way as the whole decision boundary separates.

It is noted that Definition 4.1 holds for parametric and non-parametric classifiers

and gives a proper physical meaning. It can be viewed that Definition 3.4 is a

special case of Definition 4.1 assuming Gaussian distribution. With the effective

decision boundary as in Definition 4.1, the definition of the effective decision

boundary feature matrix (Definition 3.7) will give a relevant result for non-

parametric classifiers even when the problem involves outliers. However, as will

be seen, it is more difficult to locate the effective decision boundary in non-

parametric classifiers than in parametric classifiers. We will discuss this problem

in detail later.

4.2.2 Parzen Density Estimation and Selection of Kernel Size

A non-parametric classifier with Parzen density estimation will be used to

test the proposed feature extraction algorithm for non-parametric classification;

thus we will briefly discuss Parzen density estimation. Parzen density estimation

with kernel q)is defined as (Duda and Hart 1973)

1 n X - Xi
h )

where N is the dimensionality of the data, and h is the window size, and n is the

number of training samples. The kernel (I) must be non-negative and satisfy the

following condition:
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h-_ q)(X) dX = 1

Although many authors have studied the problem of determining the

value of the Parzen scale parameter h, no theoretical value of h gives

consistently optimum results (Fukunaga and Hummels 1987). As a result, we

determined the best h experimentally in our experiments. Figure 4.2 shows the

classification results for various h. The peak performance occurs when h is

between 0.5 and 0.7 in this case.
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Figure 4.2 Determining the best h experimentally.

4.2.3 Determining the Decision Boundary and Finding Normal Vectors to the
Decision Boundary for Non-Parametric Classifiers

In order to extract feature vectors from the decision boundary of a given

classifier, we need to calculate the decision boundary feature matrix T.DBFM as

given in Definition 3.6. Then Theorem 3.2 and Theorem 3.3 tell us that the

eigenvectors of '_'DBFM corresponding to non-zero eigenvalues of _'DBFM are all
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the feature vectors needed for discriminating between the classes for the given

classifier as shown in Chapter 3. In order to calculate the decision boundary

feature matrix }"DBFM, the decision boundary must be found. However, in

general, a non-parametric classifier defines an arbitrary decision boundary

which may not be expressed in analytic form. Therefore the decision boundary

for non-parametric classifiers must be calculated numerically.

3.3):

In section 3.4.3, we defined the decision boundary as follows (Definition

{Xl h(X)=t}

P(Xlo)I)

where h(X) = - np(xlo)2)

P(_I)_

t = mp_)

(4.3)

(4.4)

Figure 4.3

I- Decision Boundary

Finding decision boundary numerically

parametric classifiers.

for non-

Consider an example in Figure 4.3. Assuming X and Y are classified differently,

the line connecting X and Y must pass through decision boundary. Although,

by moving along the line, we can find a point Z at which h(Z)=t, there is no

guarantee that the point Z is exactly on the true decision boundary, even though

h(Z)=t. Figure 4.4 shows an example. In the example, data are generated for the

following statistics.

, of]=Eo, oio,
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Figure 4.4 Finding decision boundary numerically.

The points of the decision boundary found numerically are shown along with

the true decision boundary plotted as a straight line in Figure 4.4. As can be

seen, the points of the numerically found decision boundary are distributed

along the true decision boundary. However, the points are not exactly on the

true decision boundary. The problem that the numerically found decision

boundary does not match exactly the true decision boundary becomes more

apparent when training samples are limited or the Parzen scale parameter h is

small. However, in our experiments, we found that inaccurate estimation of the

decision boundary has relatively little impact on the performance of the decision

boundary feature extraction method for non-parametric classifiers if the

estimated decision boundary is in the vicinity of the true decision boundary. We

will discuss this problem more in the experiments.

A normal vector to the decision boundary at X is given by

ah ah ah
Vh(X) = _--_1x, +_2 x2 + .....+ _-_ xn (4.5)
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However, in non-parametric classifiers, the decision boundary can not be

expressed analytically and equation (4.5) can not be used. Instead, we may

estimate the normal vector as follows:

&h &h Ah
Vh(X) = _-? x, + _-_2 x2 + ..... +_nXn (4.6)

A problem of estimating a normal vector numerically is that the nearest samples

have often much influence on the estimation of normal vectors. This problem

becomes more apparent when training samples are limited or the Parzen scale

parameter h is small. As a result, care must be taken in selecting the Parzen

scale parameter h, particularly in a high dimensional space. We will discuss this

problem more in the experiments.

4.2.4 Decision Boundary Feature Extraction Procedure for Non-Parametric
Classification

Now we propose the following procedure to find decision boundary

numerically and calculate the decision boundary feature matrix for non-

parametric classifiers.

Procedure for Feature Extraction for Non-Parametric Classifier

Utilizing the Decision Boundary
( 2 pattern class case)

STEP 1:

STEP 2:

STEP 3:

STEP 4:

Classify the training data using full dimensionality.

For each sample correctly classified as class co1, find the nearest

sample correctly classified as class co2. Repeat the same procedure

for the samples correctly classified as class _.

Connect the pairs of samples found in STEP 2. Since a pair of

samples are classified differently, the line connecting the pair of

samples must pass through the decision boundary. By moving along

the line, find the point on the decision boundary or near the decision

boundary within a threshold.

At each point found in STEP 3, estimate the unit normal vector N i by

N i = Vh(X) / IVh(X)I
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&h &h &h
where Vh(X) = _ xl + _ xz + ..... + _ xn

h(X) = -In P(xlc°l)
P(Xlco2)

assuming Bayes' decision rule for

minimum error is used.

STEP 5: Estimate the decision boundary feature matrix using the normal

vectors found in STEP 4.

1 L
_EDBFM = E._ N iN ti

I

where L is the number of points found on the

decision boundary.

STEP 6: Select the eigenvectors of the decision boundary feature matrix as

new feature vectors according to the magnitude of corresponding

eigenvalues.

Euclidean distance is used to find the nearest sample in STEP 2 in our

experiments. Figure 4.5 shows an illustration of the proposed procedure.

Although the proposed procedure does not find the decision boundary where

data are sparsely distributed, this is an advantage, not a disadvantage of the

procedure. By concentrating on the decision boundary where most of data are

distributed, the feature extraction can be more efficient as shown in Chapter 3.

The classification error increase resulting from not considering the decision

boundary in the region where data are sparsely distributed will be minimal

since there will be very little data in that region.
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Decision boundary

Figure 4.5 Illustration of the procedure feature extraction for a non-parametric
classifier utilizing decision boundary.

4.2.5 Outlier Problem

If the two classes are very separable and one class has some outliers as

shown in Figure 4.6, the proposed procedure will calculate the decision

boundary feature matrix with more weight on the decision boundary between

the outliers of class (,02 and class 0) 1 (Decision Boundary 2) than the decision

boundary between the main portion of class 0)2 and class 0)1 (Decision

Boundary 1), assuming the outliers are correctly classified. Although such a

case as in Figure 4.6 will not occur frequently in real applications, such outliers

will make the proposed procedure less efficient since Decision Boundary 1 is

the effective decision boundary in that case. However, it is not a fundamental

problem of the decision boundary feature extraction algorithm, but a procedural

problem of how to find the effective decision boundary (Definition 4.1)o In

parametric classifiers, such outliers could be eliminated using the chi-square

threshold test. In non-parametric classifiers, it is more difficult to eliminate such

outliers.

- 101



4 DBFE-Non-Parametric

Decision Boundary 1

Decision Boundary 2

0
outliers of class 0)2

Figure 4.6 Outlier problem.

To overcome the outlier problem, STEP 2 in the proposed procedure can

be modified as follows:

STEP 2a: For each sample correctly classified as class o)1, select randomly a

sample correctly classified as class 0)1. Repeat the same procedure

for the samples correctly classified as class 0)2.

By randomly selecting a sample classified as the other class, the decision

boundary which separates the main portion of classes will be weighted more

heavily, and inefficiency caused by outliers, when classes are very separable,

will be eliminated.

However, if data are distributed as shown in Figure 4.7, STEP 2a will

cause the inclusion of some ineffective decision boundary in calculating the

decision boundary feature matrix, while STEP 2 can concentrate on the

effective decision boundary. Thus, in the case of Figure 4.7, which is a more

typical case in real data, STEP 2 will be more efficient than STEP 2a. The

problem can be summarized as how to find the effective decision boundary

even when there exists outliers. So STEP 2 in the proposed procedure can be

modified as follows:
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STEP 2b: For each sample correctly classified as class (o1, find the L nearest

samples correctly classified as class eJ2. From the L nearest samples,

select randomly a sample. Repeat the same procedure for the

samples correctly classified as class (o2.

By increasing L, one can eliminate the outlier problem. By decreasing L, one

can concentrate on the effective decision boundary. Thus, there will be a

tradeoff between eliminating the outlier problem and concentrating on the

effective decision boundary. As pointed out previously, the problem is how to

find the effective decision boundary. If one can exactly locate the effective

decision boundary, the decision boundary feature extraction algorithm will be

more effective.

Decision Boundary

Figure 4.7 A more typical data distribution and its decision boundary.

4.2.6 Non-Parametric Classifiers Not Defining Probability Densities

Some non-parametric classifiers such as the kNN classifier do not define

class probability densities. If the employed non-parametric classifier does not

define class probability densities, h(X) in equation (4.3) can not be calculated.

In such a case, normal vectors can not be estimated. In that case, one might find

a vector along which the classification result changes most rapidly. For

example, let X be a point on the decision boundary. Then find the smallest ,_xi

such that the classification result of X+AXiX i is different from that of X. We may

then estimate a unit vector N along which the classification result changes most

rapidly as follows:
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1 1 1
N = V / IVl where V = _x, + _-_2 x2 + ..... + _--_ x,

4.2.7 Multiclass Cases

If there are more than two classes, the procedure can be repeated for

each pair of classes, and the total effective decision boundary feature matrix

can be calculated by averaging the effective decision boundary feature matrices

which are calculated for each pair of classes. If prior probabilities are available,

the summation can be weighted. In other words, if there are M classes, the

decision boundary feature matrix can be calculated as

M M
r DBFM=,T-,,T-,PC0 )PC )  SFM

i j, j=l
ij

where T-,DBFM is the decision boundary feature matrix between

class COland class o)j and P(coi) is the prior probability of class coi if

available. Otherwise let P(coi)=l/M.

4.3 Decision Boundary Feature Extraction and Problem Localization

By problem localization, Short and Fukunaga showed that most pattern

recognition problems can be solved using simple parametric forms (Fukunaga

and Short 1978). In (Short and Fukunaga 1982), Short and Fukunaga proposed

a feature extraction method using problem localization. In their method, the

original space is subdivided into a number of subregions and a linear

estimation is performed in each subregion. A modified clustering algorithm is

used to find the subregions. To a certain extent, the decision boundary feature

extraction method parallels the problem localization approach. In problem

localization, Short and Fukunaga recognized that a parametric discriminant

function can be used in each subregion (Fukunaga and Short 1978). In the

decision boundary feature extraction method, we recognized that only a small

portion of the decision boundary plays a significant role in discriminating

between classes.
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i_-,4.-_- Decision boundary

", _ / Effective
decision boundary

"°° °° • o•

Figure 4.8 Decision boundary and effective decision boundary.

Figure 4.9

Effective

( Class (02) J decision boundary

\41--- New decision

\ boundary extended
by the effective
decision boundary

Effective decision boundary and new decision boundary extended

by the effective decision boundary.

Consider the case of Figure 4.8. The effective decision boundary which is

plotted in bold, plays a significant role in discriminating between classes. Even

if the effective decision boundary is used, the data still can be classified in

almost the same manner as when the whole decision boundary is used as

shown in Figure 4.9. On the other hand, parts of the decision boundary, which

are plotted as plain lines, play relatively little role in discriminating between

classes while some part of the decision boundary, plotted as a dotted line, are

rarely used. Therefore, we recognized that by concentrating on the effective
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decision boundary, the feature extraction can be more efficient. It is noted that

the effective decision boundary need not be linear or be represented by a

parametric form.

However, the decision boundary feature extraction method differs from

the problem localization in several ways. First, the decision boundary feature

extraction method does not divide the pattern space into subregions. Dividing

the pattern space into subregions is not an easy task when the number of

subregions is unknown. This problem becomes apparent particularly in a

multiclass problem with real, high dimensional data. Secondly, the decision

boundary feature extraction method finds a global feature set while a local

feature set is found in the problem localization. Thirdly, in the problem

localization, Short and Fukunaga take advantage of the fact that class

boundaries are likely to be more nearly linear in each subregions while the

decision boundary feature extraction method does not assume that the effective

decision boundary is nearly linear or can be represented in a parametric form.

In the decision boundary feature extraction method, the effective decision

boundary can be of any shape. Finally the decision boundary feature extraction

method has the capability to predict the minimum number of features needed to

achieve the same classification accuracy as in the original space.

4.4 Experiment and Result

4.4.1 Experiments with generated data

In order to evaluate closely how the proposed algorithm performs under

various circumstances, tests are conducted on generated data with given

statistics. The non-parametric classifier was implemented by Parzen density

estimation using a Gaussian kernel function (Silverman 1986). In each

example, classification accuracies of the decision boundary feature extraction

method and the discriminant analysis using equation (4.1) as a criterion

function are compared. We will refer the decision boundary feature extraction

method as Decision Boundary Feature Extraction, and discriminant analysis

using equation (4.1) as Discriminant Analysis.

Example 4.1 In this example, class _1 is normal with the following statistics:
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Class o)2 is equally divided between two normal distributions with the following

statistics:

M12=[33] 0.5 and =
200 samples are generated for each class. Figure 4.10 shows the distribution of

the data along with the decision boundary found by the proposed procedure

numerically. Eigenvalues Zi and eigenvectors ¢i of _'EDBFM are calculated as

follows:

F0.69 ] I-0.72-I
_,1 = 0.98338, x2 =0.01662 _1 = L-0.72]' ¢2 = L0.69]

Since one eigenvalue is significantly larger than the other, it can be said that

the rank of T.EDBF M is 1. That means only one feature is needed to achieve the

same classification accuracy as in the original space. Considering the statistics

of the two classes, the rank of "_'EDBFM gives the correct number of features

needed to achieve the same classification accuracy as in the original space.

Table 4.1 shows the classification accuracies of Decision Boundary Feature

Extraction and Discriminant Analysis. Decision Boundary Feature Extraction

finds the right features achieving the same classification accuracy with one

feature while Discriminant Analysis performs significantly less well in this

example since class means are the same.

Table 4.1 Classification accuracies of Decision Boundary Feature Extraction
and Discriminant Analysis in Example 4.1.

Number of
Features

Discriminant Decision Boundary

Analysis Feature Extraction
54.5 (%) 92.8 (%)
91.8 (%) 92.0 I%)
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Figure 4.10

_.' A !oO,,e __,-_
¢_ 00,,
E -_ o

4 _ "_ A: A A 1.......A m o _

-6 I
-6 -4 -2 0 2 4 6

o Class 1 A Class2

I Decision boundary found numerically

Data distribution of Example 4.1. The decision boundary found by

the proposed procedure is also shown.

Example 4.2 In this example, class (01 is normal with the following statistics:

Class (02 is equally divided between two normal distributions with the following

statistics:

[] [ ooI [] [ oo], I  ;-IoI and 1M2 0.1 0.1

200 samples are generated for each class. From the statistics, it can be seen

that the decision boundary approximately consists of two cylindrical surfaces.

Figure 4.11 shows the distribution of the data in the xl-x2 plane. The decision

boundary found by the proposed procedure numerically is also shown.

Eigenvalues ;U and eigenvectors _i of T-EDBFM are calculated as follows:
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;k,1 = 0.58993, X2 = 0.33985, _3 = 0.07021

ro.2 l ro.95t r-ol _1=/'°.97/, $2=/°.24/, _3= -0.0
LO.OOJ LO.17J LO.98J

Rank(;EEDBFM) = 2

It can be said that the rank of T-EDBF M is approximately 2. Thus two features are

needed to achieve the same classification accuracy as in the original space,

which agrees with the data. Table 4.2 shows the classification accuracies of

Decision Boundary Feature Extraction and Discriminant Analysis. Decision

Boundary Feature Extraction finds the correct features achieving about the

same classification accuracy with two features while Discriminant Analysis

performs significantly less well, since there is no class mean difference.

-3

-6

Figure 4.1 1

-9
-9 -6 -3 o 3 6 9

xl

Class 1 o Class 2
• Decision boundary found by the procedure

Data distribution of Example 4.2. The decision boundary found by

the proposed procedure is also shown.
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Table 4.2 Classification accuracies of Decision Boundary Feature Extraction
and Discriminant Analysis in Example 4.2.

Number of
Features

Discriminant Decision Boundary
Analysis Feature Extraction
61.6(%) 68.8(%)
67.8 {%) 76.3 {%}
76.0 (%) 76.3 (%)

4.4.2 Experiments with real data

Real data sets were selected from a high dimensional multispectral

remote sensing data base of agricultural areas. The data were collected by the

Field Spectrometer System (FSS), a helicopter-mounted field spectrometer, as

a part of the LACIE program (Biehl et. al 1982). Table 4.3 shows the major

parameters of FSS.

Table 4.3 Parameters of Field Spectrometer System (FSS).

Number of Bands 60

Spectral Coverage 0.4 - 2.4 p.m

Altitude 60 m

IFOV(ground ) 25 m

Along with the proposed algorithm, three other feature extraction

algorithms, Uniform Feature Design, the Karhunen-Loeve transformation

(Principal Component Analysis) (Duda and Hart 1973), and the discriminant

analysis using equation (4.1) as a criterion function (Fukunaga 1990) are tested

to evaluate and compare the performance of the proposed algorithm. Uniform

Feature Design is a simple band combination procedure. For example, if the

number of features is to be reduced to 30, every two consecutive bands are

combined to form a new feature. Where the number of features desired is not

evenly divisible into 60, the nearest integer number of bands is used. For

example, for 9 features, the first 6 original bands were combined to create the

first feature, then the next 7 bands were combined to create the next feature,

and so on. Uniform Feature Design is used as a baseline means to evaluate

efficiencies of the other feature extraction methods. The discriminant analysis

using equation (4.1) is referred as Discriminant Analysis.
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In the first test, 4 classes are chosen from the FSS data. Table 4.4

provides information on the 4 classes. Figure 4.12 shows the mean graph of the

4 classes. As can be seen, there are reasonable mean differences among the

classes. In this test, 400 randomly selected samples are used for training and

the rest are used for test.

Table 4.4 Class description.

SPECIES I DATE No. of Samples
Winter Wheat May 3, 1977 657

UnknownCrops May 3, 1977 678
WinterWheat March8, 1977 691

UnknownCrotos March8, 1977 619

I I | I | |

-- Winter Wheat, May

..... Unknown Crops, May

30 .--o-.- Winter Wheat. March -- --

'" ......!',X,
2o ,. /\ !. -,,

0

0 10

\

._ .,. |,

i ,_ .m

20 30 40 50 60

Spectral Band

Figure 4.12 Mean graph of the two classes of Table 4.4.

Figure 4.13 shows a performance comparison. First the original 60 dimensional

data is reduced to 17 dimensional data using Uniform Feature Design. And then

Decision Boundary Feature Extraction, Discriminant Analysis, and Principal

Component Analysis are applied to the 17 dimensional data. With 17 features,

the classification accuracy is about 90.0%. In low dimensions (number of

features <3 ), Discriminant Analysis performs better than the other methods.
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When more than 3 features are used, Decision Boundary Feature Extraction

starts to performs better than the other methods.

Figu re 4.13

loo j

;( [ .,,.,,. ......

B 70 -.- L" j

I
_50 •

° -- Uniform Feature Design --

40 Decision Boundary Feature Extraction _

Discriminant Analysis
.... _ Principal Component Analysis

0 2 4 6 8 10 12 14 16
Number of Features

3O

Performance comparison of Uniform Feature Design, Decision
Boundary Feature Extraction, Discriminant Analysis, and
Principal Component Analysis.

In the next test, there are 3 classes and each class has 2 subclasses. In

other words, 2 subclasses were combined to form a new class. By purposely

combining data from different classes, the data are made to be multi-modal.

Table 4.5 provides information on the classes. Figure 4.14 shows a mean value

graph of the 6 subclasses, and Figure 4.15 shows a mean value graph of the 3

classes each of which has 2 subclasses. 500 randomly selected samples from

each classes are used as training data and the rest are used for test.
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Class

Class _1

Class

Class m3

Table 4.5 Class description.

Subclass

Winter Wheat
March 8, 1977

Spring Wheat
July 26, 1978
Winter Wheat
June 26, 1977

Spring Wheat
Sep. 21, 1978
Winter Wheat
Oct. 18, 1977

Spring Wheat
Oct. 26, 1976

I No. of Samples
691

518

677

469

662

441

I Total No. of Sample
1209

1146

1103

30

........i-+

lo

0

0 10 20 30 40 50

Spectral Band

Winter Wheat, March 1977
Spring Wheat, July 1978
Winter Wheat, June 1977

Spring Wheat, Sep. 1978
Winter Wheat, Oct. 1977
Spring Wheat, Oct. 1978

6O

Figure 4.14 Mean graph of the 6 sub-classes of Table 4.5.
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Figu re 4.16

Figure 4.16
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Figure 4.15 Mean graph of the 3 classes of Table 4.5.
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Performance comparison of Uniform Feature Design, Decision
Boundary Feature Extraction, Discriminant Analysis, and
Principal Component Analysis of the data of Table 4.5 (test data).

shows a performance comparison. With 17 features, the

accuracy is about 89%. Discriminant Analysis shows the best
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performances until 3 features are used. However, the classification accuracies

are much lower than the maximum possible classification accuracy and the

comparison seems to be irrelevant. Decision Boundary Feature Extraction

shows consistently better performances when more than 3 features are used.

Decision Boundary Feature Extraction achieves about 89% classification

accuracy with 7 features while all other methods needs 13-17 features to

achieve about the same classification accuracy.

In the following test, there are 3 classes and each class has 2

subclasses. In other words, 2 subclasses were combined to form a new class.

By purposely combining data from different classes, the data are made to be

multi-modal. Table 4.6 provides information on the classes. 500 randomly

selected samples from each classes are used as training data and the rest are

used for test.

Table 4.6 Class description.

Class

Class 001

Class

Class o_3

I Subclass
Winter Wheat

May 3, 1977
Unknown Crops

May 3, 1977
Winter Wheat
March 8, 1977

Unknown Crops
March 8, 1977
Winter Wheat
June 26, 1977
Summer Fallow
June 26, 1977

I No. of Samples
658

682

691

619

677

643

I Total No. of Sample'

1340

1310

1320

Figures 4.17-18 show the performance comparison. First the original 60

dimensional data was reduced to 17 dimensional data using Uniform Feature

Design. And Decision Boundary Feature Extraction, Discriminant Analysis, and

Principal Component Analysis were applied to the 17 dimensional data. With

the 17 features, the classification accuracies of training data and test data are

96.5% and 95.7%, respectively. In low dimensionality (N_2), Discriminant

Analysis shows the best performances, though the difference between

Discriminant Analysis and the decision boundary feature extraction method is

small. However, when more than 2 features are used, the decision boundary

feature extraction method outperforms all other methods.
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Figure 4.17 Performance comparison (train data).
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Figure 4.18 Performance comparison (test data).

In the following test, there are 3 classes and each class has 2

subclasses. In other words, 2 subclasses were combined to form a new class.

By purposely combining data from different classes, the data are made to be
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multi-modal. Table 4.7 provides information on the classes. 500 randomly

selected samples from each classes are used as training data and the rest are

used for test.

Table 4.7 Class description.

Class I Subclass I No. of Samples I Total No. of Sample

Spring Wheat 454 972
Class co1 July 9, 1978

Spring Wheat 518
July 26, 1978
Winter Wheat 677 1339

Class o_2 June 26, 1977
Winter Wheat 662
Oct. 18, 1977
Spring Wheat 441 910

Class cos Oct. 26, 1978

Spring Wheat 469
Seo. 21, 1978

Figures 4.19-20 show the performance comparison. First the original 60

dimensional data was reduced to 17 dimensional data using Uniform Feature

Design. Next Decision Boundary Feature Extraction, Discdminant Analysis, and

Principal Component Analysis were applied to the 17 dimensional data. With

the 17 features, the classification accuracies of training data and test data are

99.5% and 96.9%, respectively. In low dimensionality (N<2), Discriminant

Analysis shows the best performances, though the difference between

Discriminant Analysis and the decision boundary feature extraction method is

small. However, when more than 2 features are used, the decision boundary

feature extraction method outperforms all other methods. With 5 features, the

decision boundary feature extraction method achieves about 96.4%

classification accuracy for test data while Principal Component Analysis,

Discriminant Analysis and Uniform Feature Design achieve about 90.5%,

92.2%, and 87.9%, respectively.

It can be said that when class mean differences are reasonably large and

classes are uni-modal, Discriminant Analysis finds a good feature set. However,

when classes are multi-modal, Discriminant Analysis does not often find a good

feature set. On the other hand, Decision Boundary Feature Extraction finds a

good feature set even when classes are multi-modal.
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Figure 4.19 Performance comparison (train data).
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Figure 4.20 Performance comparison (test data).
4.4.3 Eigenvalues of Decision Boundary Feature Matrix and Classification

Accuracy
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Table 4.8 lists the eigenvalues of the decision boundary feature matrix of

the 17 dimensional data, along with proportions and accumulations. It also

shows classification accuracies and normalized classification accuracies

obtained by dividing classification accuracies with the classification accuracy

obtained using the whole feature set.

The rank of the decision boundary feature matrix (_:DBFM) must be

decided upon, and in this case, somewhat arbitrarily so. Theoretically, the

classification result obtained using all the eigenvectors of the decision

boundary feature matrix corresponding to non-zero eigenvalues are the same

as the classification result obtained using the whole feature set. However, for

real data, eigenvalues of the decision boundary feature matrix are seldom zero,

even though some eigenvalues are very close to zero, and there are large

differences among the eigenvalues. As a result, although it is relatively easy to

decide the rank of the decision boundary feature matrix for low dimensional

generated data, it becomes less obvious for high dimensional real data. In non-

parametric classification, it would be more difficult since the decision boundary

and normal vectors are estimated. One may add eigenvalues until the

accumulation exceeds 95% of the total sum and set that number of the

eigenvalues as the rank of the .T-,DBFM. Defined in this way, the rank of the 7-,DBFM

would be 9. Alternatively, one may retain the eigenvalues greater than one

tenth of the largest eigenvalue. In this way, the rank of the 7-,DBFM would be 6. As

can be seen of Table 4.8, the normalized classification accuracy increases

monotonically as the accumulation of eigenvalues increases up to 5 features.

After 5 features, the classification accuracy is almost saturated and adding more

features does not improve classification accuracy. Figure 4.21 shows the

relationship between the accumulations of eigenvalues and the normalized

classification accuracies. More experiments are needed to obtain a better

understanding on the relationship between the normalized classification

accuracy and the accumulation of eigenvalues.
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Table 4.8 Relationship between eigenvalues of the decision boundary
feature matrix and classification accuracy.

(Ev: Eigenvalues, Pro: Proportion, Accu: Accumulation, CI. Ac:
Classification Accuracy, N. CI. Ac: Normalized Classification

Accuracy)

Ev I Pr°i%) I Accu(%) I C(I;yo/_CI N'CI'Ac(%)
1 995.2 34.5 34.5 57.1 63.2
2 556.4 19.3 53.8 84.7 93.7
3 446.4 15.5 69.3 87.9 97.2
4 293.3 10,2 79.4 88.5 97.9
5 138.5 4.8 84.2 89.8 99,3
6 120.5 4.2 88,4 89.8 99.3
7 88.6 3.1 91.5 90.1 99.7
8 55.8 1,9 93.4 90.1 99.7
9 50.8 1.8 95.2 90.5 100,1
10 46.2 1.6 96,8 90.2 99.8
11 34.0 1.2 97.9 90.1 99.7
12 21.4 0.7 98.7 90.2 99.8
13 14.1 0.5 99.2 90.3 99.9
14 11.3 0.4 99.6 90.4 100.0
15 5.8 0.2 99.8 90.4 100.0
16 4.5 0.2 99.9 90.4 100.0
17 2.3 0.1 100.0 90.4 100.0

Figure 4.2t
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4.5 Estimation of the Decision Boundary and Normal Vector

Since non-parametric classifiers do not define the decision boundary in

analytic form, it must be estimated numerically. Then, from the estimated

decision boundary, normal vectors are estimated as follows:

Ah _h Ah
Vh(X) = _ x, + _ x2 + ..... + _ x,

Next we will investigate the effect of inaccurate estimation of the decision

boundary and normal vectors on the performance of the proposed decision

boundary feature extraction.

4.5.1 Effect of Inaccurate Estimation of the Decision Boundary

In the proposed procedure, we found a point on the decision boundary

by moving along the line connecting two differently classified samples. In other

words, by moving along the line, we try to find a point X such that

h(X)=t

When the difference between the decision boundary and an estimated decision

boundary is smaller than a threshold, the searching procedure stopped. In other

words, if

(h(X) - t)(h(X') - t) < 0 and IX - X'l <

we take either X or X' as a point on the decision boundary. To investigate the

sensitivity of the decision boundary feature extraction method, it was applied to

the 17 dimensional data with various thresholds, _=0.01G, 0.05(_, 0.1_, 0.5_, 1o

and 2a, where o is the average standard deviation, i.e.,

1 M N i

° =MN oi

where N is the number of features, M is the number of classes, and oj is j-

th feature standard deviation of class _.
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With 17 features, the classification accuracy is 90.4%. Figure 4.22 shows the

performance comparison for the first 5 features. For 1 feature, there is not much

difference. For 2 features, the classification accuracy decreases as the

threshold increases. If more than 2 features are considered, the performances

are essentially the same. When 3 features are used, all thresholds achieve

about 89% classification accuracy. From the experiments, it appears that the

threshold between 0.05o and 0.5o would be reasonable, and the performance

of the decision boundary feature extraction method does not appear to be very

sensitive to inaccurate estimation of the decision boundary if the estimated

decision boundary is in the vicinity of the true decision boundary. Furthermore,

there is no guarantee that a smaller threshold always results in a more accurate

estimation of the decision boundary (section 4.2.3).
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Figure 4.22
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[] _---0.Io
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• _2o
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Number of Features

Effect of inaccurate estimation of decision boundary on the

performance of the decision boundary feature extraction method.

4.5.2 Effect of the Parzen Scale Parameter h in Estimating Normal Vectors

Since normal vectors are estimated using equation (4.6), the Parzen

scale parameter h will affect the estimation of normal vectors. Since normal

vectors are used to estimate the decision boundary feature matrix, the Parzen

scale parameter will affect the performance of the decision boundary feature
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extraction method. In the following test, we estimated the normal vectors using

various Parzen scale parameters and investigate the effect of the Parzen scale

parameter on the performance of the decision boundary feature extraction

method. The decision boundary feature extraction method is applied to 18

dimensional data. With 18 features the classification accuracy is 92.9%. Figure

4.23 shows the performance comparison for various Parzen scale parameters

in estimating normal vectors. When h=0.3, 0.5, 0.7, and 1.0, the classification

accuracies with 3 features are 92.6%, 92.3%, 92.2%, and 92.1%, respectively.

As larger Parzen scale parameters are used (h > 2), classification accuracies

decrease, though the decreasing rate is relatively small. However, if the Parzen

scale parameter is too small (h--0.1), the classification accuracy decreases

considerably. Overall, the Parzen scale parameters between 0.5 and 1.0 give

best results in this case. Although the performance of the decision boundary

feature extraction method does not seem to be very sensitive to the variation of

the Parzen scale parameter, care must be taken that the Parzen scale

parameter should not be too small or too large for a given data.

lOO

80 I h=0.1
h=0.3

h=0.5h=0.7

I_ h=l.0•- h-1.5

[] h=2.0
[] h=3.0

h 5.0

1 2 3 4
Number of Features

Figure 4.23 Performance comparison for various Parzen scale parameters in
estimating normal vectors.
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4.6 Conclusion

Decision Boundary Feature Extraction is a new feature extraction

technique which is derived from the fact that all the feature vectors needed in

discriminating between classes for a given classifier can be obtained from the

decision boundary defined by the given classifier. Instead of utilizing class

mean differences or class covariance differences, the method utilizes the

decision boundary directly. As a result, the method does not deteriorate under

the circumstances of equal means or equal covariances, and can be used for

both parametric and non-parametric classifiers. In this chapter we proposed a

decision boundary feature extraction algorithm for non-parametric classifiers. By

directly utilizing the decision boundary defined by an employed non-parametric

classifier without any assumption about the distribution of data, the proposed

feature selection algorithm can take advantage of the generality of the non-

parametric classifier, which can define a complex decision boundary. The

experiments show that the performance of the proposed algorithm is very

promising. The importance of such algorithms is enhanced as the use of non-

parametric classifiers such as neural networks continues to grow (Lee and

Landgrebe 1992-2, Lee and Landgrebe 1992-3).

Compared with the conventional feature extraction/selection algorithms,

the proposed algorithm predicts the minimum number of features to achieve the

same classification accuracy as in the original space and at the same time finds

the needed feature vectors which have a direct relationship with classification

accuracy. Unlike some of the conventional extraction algorithms using the

lumped covariance, the proposed algorithm takes full advantage of the

information contained in class covariance differences by extracting new

features directly from the decision boundary. Since the information contained in

the second order statistics increases its importance in discriminating between

classes in high dimensional data, the proposed algorithm also has potential for

feature extraction for high dimensional data and multi-source data.
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CHAPTER 5 DECISION BOUNDARY FEATURE EXTRACTION FOR NEURAL

NETWORKS

5.1 Introduction

Although neural networks have been successfully applied in various

fields [(Ersoy and Hong 1990) (McEliece et al. 1987) and (Fukushima and Wake

1991)], relatively few feature extraction algorithms are available for neural

networks. A characteristic of neural networks is that they need a long training

time but a relatively short classification time for test data. However, with more

high dimensional data and multi-source data available, the resulting neural

network can be very complex. Although once the networks are trained, the

computational cost of neural networks is much smaller compared with other non-

parametric classifiers such as the Parzen density estimator (Parzen 1962) and

the kNN classifier (Cover and Hart 1967), the lack of efficient feature extraction

methods inevitably will introduce some inefficient calculation into neural

networks. For example, the number of multiplications needed to classify a test

sample using a 2 layer feedforward neural network which has 20 input neurons,

60 hidden neurons (assuming that the number of hidden neurons is three times

the number of input neurons), and 3 output neurons is given by

20*60 + 60*3 = 1,380

Figure 5.1 illustrates an example of the hardware implementation of the original

data set.
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20 Input 60 hidden 3 output
neurons neurons neurons

©
1200 multiplications 180 multiplications

Figure 5.1 Hardware implementation of the original data set.

Assuming that it is possible to obtain about the same performance with 5

features selected by a good feature extraction method, the number of

multiplications needed to classify a test sample can be reduced to

20*5 + 5"15 + 15"3 = 220

Figure 5.2 illustrates an example of the hardware implementation of the reduced

data set. The first 100 (=20*5) multiplications are needed to calculated the 5

features from the original 20 dimensional data. In this example, the reduction

ratio is 220/1380 = 0.16. The reduction ratio will increase as the number of

hidden layers and the number of hidden neurons increase. Thus, by employing

a good feature extraction method, the resulting network can be much faster and

simpler. If the neural network is to be implemented in a serial computer,

classification time can be substantially reduced. If the neural network is to be

implemented in hardware, the complexity of the hardware can be substantially

reduced since the complexity of the hardware is proportional to the number of

neurons and multiplications (connections between neurons). Hardware

implementation of neural networks is an important topic [(Moonpenn et al. 1987),

(Yasunaga et al. 1991), and (Fisher et al. 1991)]. In order to integrate a neural

network on a single chip, it is important to reduce the number of neurons. The

proposed method can be used in such a case, reducing the complexity of the

network.
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20 Input 5 new input 15 hidden
neurons neurons neurons

;O

d./
100 multiplications 75 multiplications

3 output
neurons

45 multiplications

Figure 5.2 Hardware implementation of the reduced data set.

Neural networks are distribution free and can define arbitrary decision

boundaries, and it is desirable that a feature extraction method for neural

networks can preserve that characteristic. In this chapter, we apply the decision

boundary feature extraction method to neural networks. First, we propose a

feature extraction method for neural networks using the Parzen density

estimator. In that method, we first select features using the Parzen density

estimator employing the decision boundary feature extraction method. Then we

use the selected features to train a neural network. Using a reduced feature set,

we attempt to reduce the training time of a neural network and obtain a simpler

neural network, further reducing the classification time for test data.

Finally, we apply directly the decision boundary feature extraction

algorithm to neural networks (Lee and Landgrebe 1992-3). By directly applying

the decision boundary feature extraction algorithm to neural networks, there will

be no saving in training time. However, we will obtain a simpler network with

better performance.
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5.2 Neural Networks

5.2.1 Network Configurations

We will briefly discuss the neuron and the structure of a 2-layer

feedforward neural network which will be used in the experiments.

Backpropagation is used to train the network. Figure 5.3 shows an example of

the neuron (Wasserman 1989).

Wl
Xl

W2
X2

• Wn
Xn

Figure 5.3 Artificial neuron with activation function.

A set of inputs each is multiplied by a weight, and the products are summed.

Next an activation function F is applied to the summation, producing the signal

OUT as follows:

1
OUT = F(NET)= (1+e "Er) (5.1)

!1

where NET = _/_,x_w_
i=1

In the above example, the sigmoid function is used for the activation function.

Figure 5.4 shows a 2 layer neural network (input layer, hidden layer, and output

layer) with 2 outputs (OUT1 and OUT2). In Figure 5.4, let X be the input vector (1

by N) and let Y be the output vector (1 by M) of the hidden layer. Then

y = F(WiX ) (5.2)

where X and Y are column vectors and Wi is a weight matrix (M by N) for the

input vector.
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Figure 5.4

Input Hidden Output
Layer Layer Layer

An example of 2 layer feedforward neural networks (2 pattern

classes).

Then OUT1 and OUT2 can be expressed as follows:

OUTI(X) = F(W_Y)= F(W_F(WiX))

OUT2(X) = F(W2y)= F(W_hF(WiX))

(5.3)

(5.4)

where W_ and W 2 are weight vector (M by 1) for the output vector of the hidden

neurons. The decision rule is to select the class corresponding to the output

neuron with the largest output (Lippmann 1987).

5.2.2 Backpropagation

The backpropagation algorithm is used to train the neural network

[(Wasserman 1989) and (Hertz et al. 1991)] in the experiments. In the training

phase, the weight changes are made by

where

AWpq, k = q 5q, k OUTp,j

_1= learning rate

5q, k -- the value of 5 for neuron q in the layer k

OUTp,j = the value of OUT for neuron p in the layer j.
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The hidden layers are trained by propagating the output error back through the

network layer by layer, adjusting weights at each layer.

However, it is noted that the decision boundary feature extraction

algorithm can be used for neural networks regardless of training algorithms.

Any other training algorithm can be employed.

5.3 Feature Extraction for Neural Networks Using the Parzen Density Estimator

5.3.1 Neural Networks and the Parzen Density Estimator

An advantage of non-parametric classifiers is that they can define

arbitrary decision boundaries without any assumption on underlying densities. If

underlying densities are unknown or problems involve complex densities which

can not be approximated by common parametric density functions, use of a

non-parametric classifier may be necessary. Some of the most widely used

non-parametric classifiers include the Parzen density estimator, the kNN

classifier, and neural networks. Recently, Neural network classifiers have been

applied to various fields and demonstrated to be attractive alternatives to

conventional classifiers (Benediktsson et al. 1990). One of the characteristics of

neural networks is a long training time. However, once networks are trained,

classification for test data can be done relatively fast.

In this section, we propose a feature extraction method for neural

networks using the Parzen density estimator. We first select a new feature set

using the decision boundary feature extraction algorithm for non-parametric

classification in Chapter 4. By using the Parzen density estimator for feature

extraction, we attempt to preserve the non-parametric characteristics of neural

networks. Then the selected features are used to train neural networks. Using a

reduced feature set, we attempt to reduce the training time of neural networks

and obtain simpler neural network, further reducing the classification time for

test data. Figure 5.5 shows an illustration of the proposed method.
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Feature extraction using _ Train neural network using

Parzen density estimator the extracted features

Figure 5.5 Feature extraction for neural networks using
Parzen density estimation.

5.3.2 Experiments

5.3.2.1 Experiments with generated data

In order to evaluate closely how the proposed algorithm performs under

various circumstances, tests are conducted on generated data with given

statistics.

Example 5.1 In this example, class 0)1 is normal with the following statistics:

= 0.5

Class 0)2 is equally divided between two normal distributions with the following

statistics:

' ' 250"5 ] and M22=[ 3] _2=[ O.o.
400 samples are generated for each class. Figure 5.6 shows the distribution of

the data along with the decision boundary found by the proposed procedure

numerically. Eigenvalues Xi and eigenvectors <_i of %EDBFM are calculated as

follows"

X1 = 0.98338, X2 =0.01662
r 0.691

_ = L-O.72J'
ro.72]

_)2= L0.69J

Since one eigenvalue is significantly larger than the other, it can be said that

the rank of 7-.EDBF M is 1. That means only one feature is needed to achieve the
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same classification accuracy as in the original space. Considering the statistics

of the two classes, the rank of T.EDBF M gives the correct number of features

needed to achieve the same classification accuracy as in the original space.

The selected features are used to train neural networks.
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Figure 5.6 Data distribution of Example 5.1. The decision boundary found
by the proposed procedure is also shown.

Table 5.1 shows the classification accuracies of the Parzen Density Estimator

and neural networks. With one feature, the Parzen density estimator achieves

about the same classification accuracy as could be obtained in the original 2-

dimensional space. Likewise, the neural network achieves about the same

classification accuracy with one feature selected by the proposed algorithm.

Table 5.1 Classification accuracies of the Parzen density estimator
and neural networks.

Number of Parzen Density
Features Estimator

1

Neural
Networks

91.4tO/ol 91.6(%t
91.6<%) 90.9(%/
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Figure 5.7 shows a graph of the classification accuracies vs. the number of

iterations. When one feature is used, the network converged after about 40

iterations. When two features are used, the network converged after about 70

iterations.
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Figure 5.7 Classification accuracies vs. the number of iterations.

Example 5.2 In this example, there are 3 classes. Class 0)1 is normal with the

following statistics:

[!l [i°ilM1 = gl =
o

Class o}2 is equally divided between two normal distributions with the following

statistics:

Iil Ii°il I!l Ii°ilM_ 1 and M 2= T-.22=
= "T-'2= 0 0

And class 0)3 is equally divided between two normal distributions with the

following statistics:
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Iil I!°!l I°l Ii°il' ' an_M_= _._=
M3 = T'3 = 0 0

The distributions of these classes are shown as ellipses of concentration in

Figure 5.8 in the xl-x2 plane.

( = _( class 0)1! ( = !
xl

x2

Figure 5.8 The distributions of Example 5.2 are shown as eclipse
of concentrations.

Table 5.2 shows the classification accuracies of the Parzen density estimator

and neural networks. With two features, the Parzen density estimator achieves

about the same classification accuracy as could be obtained in the original 3-

dimensional space. Table 5.2 also shows the classification accuracies of the

neural network. The proposed feature extraction method for neural networks

using the Parzen density estimator finds the correct 2 features, achieving about

the same classification as could be obtained using the original 3-dimensional

data.
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Table 5.2 Classification accuracies of the Parzen density estimator
and neural network.

Numberof Parzen Density
Features Estimator

1 65.0 (%)
2 84.8 (%)
3 84.8 (%)

Neural
Networks

64.8 (%)
84.3 (%)
84.0 (%)
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Figure 5.9 Classification accuracies vs. the number of iterations.

Figure 5.9 shows a graph of the classification accuracies vs. the number of

iterations. When one feature is used, the network essentially converged after

about 50 iterations. When two features are used, the classification accuracies

are almost saturated after about 75 iterations. After 150 iterations, the

classification accuracy is about 84%. When three features are used, the network

converged after about 75 iterations, achieving about 84% classification

accuracy.
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5.3.2.2 Experiments with real data

Experiments were done using FSS (Field Spectrometer System) data

which has 60 spectral bands (Biehl et al. 1982). To evaluate the performance of

the proposed method, two other feature selection/extraction algorithms, Uniform

Feature Design (see Section 3.6.2.1) and Principal Component Analysis (the

Karhunen-Loeve transformation) are tested to evaluate and compare the

performance of the proposed algorithm.

In order to test the performance in a multimodal situation, 3 classes with 2

subclasses were chosen. In other words, 2 subclasses were combined to form a

new class, thus the data are purposely made multimodal. Table 5.3 provides

information on the classes. In the experiment, 500 randomly selected samples

from each class were used as training data and the rest were used as test data.

Class

Class 0)1

Class 0)2

Class o)3

Table 5.3 Class description.

I Subclass

Spring Wheat
July 9, 1978
Spring Wheat
July 26, 1978
Winter Wheat
June 26, 1977
Winter Wheat
Oct. 18, 1977

Spring Wheat
Oct. 26_ 1978
Spring Wheat
Sop. 21, 1978

I No. of Samples
454

518

677

662

441

469

[ Total No. of Sample]
972

1339

910

First the original data are reduced to a 17 feature data set using Uniform

Feature Design. Then, the Parzen density estimator is applied to the reduced

data set and the decision boundary is calculated numerically. From the decision

boundary, a decision boundary feature matrix is estimated and a new feature

set is calculated from the decision boundary feature matrix.

Using the features selected by Parzen density estimator, neural networks

are trained. In order to evaluate the performance of the proposed algorithm, two

other feature sets selected by Uniform Feature Design and Principal

Component Analysis are also used to train the network. The classification
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accuracies of training data and test data of the 1 through 10 dimensional data

sets selected by the proposed algorithm are shown in Figures 5.10-11. As can

be seen, the neural network using the proposed algorithm shows considerably

better performances than the neural networks using Uniform Feature Design

and Principal Component Analysis. In Figure 5.10, the 4-5 features selected by

the proposed algorithm achieved about the same classification accuracy as can

be obtained with the original 17 dimensional data.

Figures 5.12-13 show graphs of classification accuracy vs. number of

iterations. From Figure 5.13, it can be said that the performances of the neural

networks are saturated after about 100-200 iterations. The training time is

proportional to the number of iterations and the square number of neurons.

When the network is implemented in hardware, the complexity of the hardware

will be proportional to the square number of neurons. As a result, by using the

Parzen density estimator to select features for neural networks, one can reduce

the training time and the complexity of the hardware implementation. For

example, in Figure 5.13 (test data), the classification accuracy with 10 features

is 96.0% and the classification accuracy with 4 features is 93.3%. The difference

is 2.7%. If such a decrease in classification accuracy is acceptable, the training

time can be reduced by the factor of 6.25. Furthermore, the classification time

will be also reduced by the same factor when implemented in a serial computer.

When implemented in hardware, the complexity of the hardware can be also

reduced by the same factor.
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Figure 5.10 Performance comparison (training data).
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Figure 5.11 Performance comparison (test data).
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Figure 5.13 Iteration vs. classification accuracy (test data).

It is found that using the Parzen density estimator to select features for

neural networks is not optimal in a sense that the performance can be improved

if the decision boundary feature extraction method is directly applied to the

neural network. In the following section, the decision boundary feature

extraction method will be directly applied to the neural network. However, by

directly applying the decision boundary feature extraction method to the neural

network, there will be no saving in training time. On the other hand, using the

Parzen density estimator to select features for neural networks results in

reduction in training time.
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5.4 Decision Boundary Feature Extraction for Neural Networks

5.4.1 Decision Boundaries in Neural Networks

In order to utilize the decision boundary feature extraction algorithm for

neural networks, the decision boundary must be defined. We define the

decision boundary in multi-layer feedforward neural networks as follows:

Definition 5.1 The decision boundary in a neural network for a two pattern class

problem is defined as

{ X I OUTI(X) = OUT2(X) } or (5.5)

where X is an input vector {See equations (5.3), (5.4), and (5.5)}.

In other words, the decision boundary of a two pattern class problem is

defined as a locus of points on which OUTI(X) = OUT2(X) where X is an input

vector. Let h(X)=OUTI(X) - OUT2(X) where X is an input vector to a neural

network. Then the decision boundary can be defined as

{ X I h(X)=0 } (5.6)

The normal vector to the decision boundary at X will be given by

_h ah ah
?h(X) = _-_ x, + _--_--_2x2 + ..... + _--_xo

(5.7)

Since the decision boundary in neural networks can not be expressed

analytically, the term ?h(X) must be calculated numerically as follows:

_h Ah ,_h
Vh(X) = _x, + _ + ..... +_ xn

(5.8)

5.4.2 Decision Boundary Feature Extraction Procedure for Neural Networks

Next we propose the following procedure for neural networks utilizing the

decision boundary feature extraction algorithm.
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Decision Boundary Feature Extraction Procedure for Neural Networks
( 2 pattern class case)

STEP 1:

STEP 2:

STEP 3:

STEP 4:

Train the neural network using all features.

For each sample correctly classified as class _1, find the nearest

sample correctly classified as class e2- Repeat the same procedure

for the samples classified as class _.

The lines connecting a pair of samples found in STEP 2 must pass

through the decision boundary since the pair of samples are

classified differently. By moving along the line, find the point on the

decision boundary or near the decision boundary within a threshold.

At each point found in STEP 3, estimate the normal vector N i by

where

Ni =Vh(X) / IVh(X)I
Ah Ah Ah

Vh(X) = _'-_ x, +_x2+ ..... + _-_ xo

h(X) = OUTI(X) - OUT2(X) {See equation (5.5)}.

STEP 5: Estimate the decision boundary feature matrix using the

vectors found in STEP 4.

1 t
_"EDBFM = L._ N iN i

I

where L is the number of samples correctly classified

normal

STEP 6: Select the eigenvectors of the decision boundary feature matrix as

new feature vectors according to the magnitude of corresponding

eigenvalues.

If there are more than 2 classes, the procedure can be repeated for each

pair of classes after the network is trained for all classes. Then the total decision

boundary feature matrix can be calculated by averaging the decision boundary

feature matrix of each pair of classes. If prior probabilities are available, the

summation can be weighted. That is, if there are M classes, the total decision

boundary feature matrix can be calculated as

M M

_DSFM = _, _ P(e)i)P(_j)_)BFM
i j, j_i
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where T_iJDBFMis a decision boundary feature matrix between class _i and

class 0)j and P(_i) is the prior probability of class _i if available. Otherwise let

P(o_i)=l/M.

5.4.3 Experiments

5.4.3.1 Experiments with generated data

In order to evaluate closely how the proposed algorithm performs under

various circumstances, tests are conducted on generated data with given

statistics.

Example 5.3. In this example, class 0)1 is normal with the following statistics:

[o] °035]
And class 0)2 is equally divided between two normal distributions with the

following statistics:

M_=['33],_=[ 20"25]0.5 and M2= [3] '2 [2.50.25]=

200 samples are generated for each class. Figure 5.14 shows the distribution of

the data along with the decision boundary found by the proposed procedure

numerically. Eigenvalues Xi and eigenvectors _i of 7-,EDBFM are calculated as

follows:

r0.721 r0.691
X1 = 0.98105, X2 =0.01895 _1 = L-O.69J' e2 = LO.72J
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Figure 5.14
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Since one eigenvalue is significantly larger than the other, it can be said that

the rank of _EDBFM is 1. That means only one feature is needed to achieve the

same classification accuracy as in the original space. Considering the statistics

of the two classes, the rank of T.EDBF M gives the correct number of features

needed to achieve the same classification accuracy as in the original space.

With the original 2 features, the classification accuracy is about 90.8%. Table

5.4 shows the classification accuracies of the decision boundary feature

extraction method. As can be seen, the decision boundary feature extraction

method finds the right feature, achieving about the same classification accuracy

with one feature. Figure 5.15 shows classification accuracies vs. number of

iterations.

Table 5.4 Classification accuracies of Decision Boundary Feature Extraction
of Example 5.3.

Number of Features Classification Accuracy
1 91.6 f°/ol

90.9 (%)
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Figure 5.15 Iteration vs. classification accuracy.

Example 5.4 In this example, there are 3 classes. Class (ol is normal with the

following statistics:

M 1 = .T_,1 = 0 4
O0

And class 0)2 is equally divided between two normal distributions with the

following statistics:

[i] [i°i] [i]1 and M2= _,22= 0 2
M2= T'I_= 0 0 0

And class (03 is equally divided between two normal distributions with the

following statistics:

Ii] Ei°il t°°i]1 1 2 and M2= X2= 0 2
M3= _£3= 0 0 0
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The distributions of these classes are shown in Figure 5.16 in the xl-x2 plane,

along with the decision boundary found by the procedure. Eigenvalues Xi and

eigenvectors _i of _EDBFM are calculated as follows:

X1 = 0.59957, _,2 = 0.40027, _'3 = 0.00015

F 0.06"1 +-1.001 I-O.C _.'1

_1 = 1.001,_2 =|0'06 ,_3=L0.£_-I-0.021 L 0.02 1.C ,_;

Rank(_EDBFM) = 2

O,I

I.I.

i

.... i .......

_ i:1:1

Feature 1

o class 1 A class2 a class3

• Decision boundary found by the procedure

Figure 5.16 Data distribution and the decision boundary found by the
proposed procedure.

With the original 3 features, the classification accuracy is about 85.7%. Table

5.5 shows the classification accuracies of the decision boundary feature

extraction method. As can be seen, the decision boundary feature extraction

method finds the right two features. Figure 5.17 shows a graph of the

classification accuracies vs. the number of iterations.
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Table 5.5 Classification accuracies of Decision Boundary Feature Extraction of
Example 5.4.

No. Features Classification Accuracy

1 62.8 (%)

2 85.7(%)
3 85.8 (%)
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Figure 5.17 Iteration vs. classification accuracy.

5.4.3.2 Experiments with real data

Experiments were done using FSS (Field Spectrometer System) data

which has 60 spectral bands (Biehl et al. 1982). Along with the proposed

algorithm, three other feature extraction algorithms, Uniform Feature Design

(see Section 3.6.2.1) and the Karhunen-Loeve transformation (Principal

Component Analysis), and Discriminant Analysis (Fukunaga 1990) are tested to

evaluate to evaluate the performance of the proposed algorithm.
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In the following test, 4 classes were chosen from the FSS data. Table 5.6

provides information on the 4 classes. 400 randomly selected samples from

each classes are used as training data and the rest are used for test.

Table 5.6 Class description.

] SPECIES ! DATE I No. of Samples
Winter Wheat May 3, 1977 657

Unknown Crops May 3, 1977 678
Winter Wheat Mar. 8, 1977 691

Unknown Crops Mar. 8, 1977 619

First the original 60 dimensional data was reduced to 17 dimensional data

using Uniform Feature Design. And the decision boundary feature extraction

method, Discriminant Analysis, and Principal Component Analysis were applied

to the 17 dimensional data. Figures 5.18 and 5.19 show the classification

results of training data and test data. With the 17 dimensional data, one can

achieve about 97.6% classification accuracy for training data and about 94.4%

classification accuracy for test data. The decision boundary feature extraction

method achieves about the same classification accuracy for test data with just 3

features as can be seen in Figure 5.19. With 3 features, the decision boundary

feature extraction method achieves about 92.2% classification accuracy for test

data while Uniform Feature Design, Principal Component Analysis, and

Discriminant Analysis achieve about 77.7%, 78.6%, 89.7%, respectively.
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Figure 5.18 Performance comparison of the data of Table 5.6 (Train data).
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Figure 5.19 Performance comparison of the data of Table 5.6 (Test data).

In the next test, there are 3 classes and each class has 2 subclasses. In

other words, 2 subclasses were combined to form a new class. By purposely

combining data from different classes, the data are made to be multi-modal.
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Table 5.7 provides information on the classes. Figure 4.13 (Chapter 4) shows a

graph of the 6 subclasses and Figure 4.14 (Chapter 4) shows a graph of the 3

classes each of which has 2 subclasses. 500 randomly selected samples from

each classes are used as training data and the rest are used for test.

Class

Class o_1

Class r,_

Class

Table 5.7 Class description.

Subclass

Winter Wheat
March 8, 1977
Spring Wheat
July 26, 1978
Winter Wheat
June 26, 1977

Spring Wheat
Sep. 21, 1978
Winter Wheat
Oct. 18, 1977

Spring Wheat
Oct. 26, 1978

No. of Samples
691

518

677

469

662

441

Total No. of Sample I
1209

1146

1103

Figures 5.20-21 show the performance comparison. First the original 60

dimensional data was reduced to 17 dimensional data using Uniform Feature

Design. With the 17 features, the classification accuracies of training data and

test data are 99.9% and 95.6%, respectively. In low dimensionality (N<2),

Discriminant Analysis shows the best performances. However, the classification

accuracies are much smaller than the maximum possible classification

accuracies and the comparison seems irrelevant. When more than 2 features

are used, the decision boundary feature extraction method outperforms all other

methods. The decision boundary feature extraction method achieves about the

same classification accuracy as could be obtained in the original 17-

dimensional space with just 4 features. In particular, with 4 features, the

classification accuracy of the decision boundary feature extraction method is

about 92.4% while the classification accuracies of Uniform Feature Design,

Principal Component Analysis, and Discriminant Analysis are 78.1%, 82.5%,

and 82.3%, respectively.
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Figure 5.20 Performance comparison of the data of Table 5.7 (train data).

Figure 5.21

40
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Performance comparison of the data of Table 5.7 (test data).
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Figures 5.22-23 show graphs of classification accuracy vs. number of iterations

of the decision boundary feature extraction method. As can be seen, the

performances of neural networks are saturated after about 100 iterations. It can

be also seen in Figure 5.23 that the performances are almost saturated when 4

features are used.

6O
o 1oo 200 300 400

Number of Iterations

Number of Features=3
Number of Features=4

Number of Features=5

Number of Features=6

Number of Features=IT

500

Figure 5.22 Iteration vs. classification accuracy (training data).
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Figure 5.23 Iteration vs. classification accuracy (test data).

In the next test, there are 3 classes and each class has 2 subclasses. In

other words, 2 subclasses were combined to form a new class. By purposely

combining data from different classes, the data are made to be multi-modal.

Table 5.8 provides information on the classes. 500 randomly selected samples

from each classes are used as training data and the rest are used for test.
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Class

Class o)1

Class

Class o}3

Table 5.8 Class description.

Subclass

Winter Wheat
March 8, 1977
Spring Wheat
July 9, 1978
Winter Wheat
June 26, 1977

Spring Wheat
July 26, 1978
Winter Wheat
Oct. 18, 1977
Spring Wheat
Oct. 26, 1978

No. of Samples
691

454

677

518

662

441

Total No. of Sample
1145

1195

1103

Figures 5.24-25 show the performance comparison. First the original 60

dimensional data was reduced to 17 dimensional data using Uniform Feature

Design. And the decision boundary feature extraction method, Discriminant

Analysis, and Principal Component Analysis were applied to the 17

dimensional data. With the 17 features, the classification accuracies of training

data and test data are 97.3% and 96.7%, respectively. In low dimensionality

(N<2), Discriminant Analysis shows the best performances, though the

difference between Discriminant Analysis and the decision boundary feature

extraction method is small. However, when more than 2 features are used, the

decision boundary feature extraction method outperforms all other methods.

With 3 features, the decision boundary feature extraction method achieves

about 95.6% classification accuracy for test data while Uniform Feature Design,

Principal Component Analysis, and Discriminant Analysis achieve about 82.3%,

85.1%, and 90.8%, respectively.
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Figure 5.25 Performance comparison (test data).
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5.5 Conclusion

In this chapter, we extended the decision boundary feature extraction

method to neural networks. First we proposed the feature extraction algorithm

for neural networks using Parzen density estimator (Figure 5.5). In this method,

we first selected a new feature set using Parzen density estimator employing

the non-parametric decision boundary feature extraction algorithm in Chapter 4.

Then we used the reduced feature set to train neural networks. As a result, it

would be possible to reduce training time and to obtain a simpler network

because fewer features are used.

However, it is recognized that the characteristics of the Parzen density

estimator and neural networks are not exactly the same. Thus, we applied the

decision boundary feature extraction method directly to neural networks. We

started by defining the decision boundary in a neural network. From the

decision boundary, we estimated the normal vectors to the decision boundary,

and the decision boundary feature matrix was calculated. From the decision

boundary feature matrix, a new feature set was calculated. By directly applying

the decision boundary feature extraction algorithm to neural networks, the

performance was improved compared with using the Parzen density estimator

for feature extraction. However, it is noted that by directly applying the decision

boundary feature extraction algorithm to neural networks, there is no reduction

in training time. In fact, the training time increased since we need to train two

networks, one for the original feature set and the other for the reduced feature

set.

The proposed algorithms preserve the nature of neural networks which

can define a complex decision boundary and is able to take advantage of that

nature. By employing the proposed algorithms, it is possible to reduce the

number of features, and equivalently the number of neurons. This reduction

results in much simpler networks and shorter classification time. When neural

networks are to be implemented in hardware, the reduced number of neurons

means a simpler architecture (Figures 5.1-2).
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CHAPTER 6 DISCRIMINANT FEATURE EXTRACTION FOR

PARAMETRIC AND NON-PARAMETRIC CLASSIFIERS

6.1 Introduction

In Chapter 3, the decision boundary feature extraction algorithm was

developed where a new feature set is extracted from the decision boundary

such that the classification result is preserved. The decision boundary feature

extraction was applied to parametric classifiers (Chapter 3), to non-parametric

classifiers (Chapter 4), and to neural networks (Chapter 5). In order to extract

feature vectors from the decision boundary, the decision boundary feature

matrix was defined which is constructed from the normal vectors to the decision

boundary. In the decision boundary feature extraction techniques, we do not

care whether the value of the discriminant function is changed or not, as long as

the classification result remains the same.

In this chapter, the concept of decision boundary feature extraction

algorithm is generalized such that feature extraction is considered as

preserving the value of the discriminant function for a given classifier (Lee and

Landgrebe 1992-4). And we consider feature extraction as eliminating features

which have no impact on the value of the discriminant function and propose a

feature extraction algorithm which eliminates those irrelevant features and

retains only useful features. The proposed algorithm, referred as Discriminant

Feature Extraction, can be used both for parametric and non-parametric

classifiers and its performance does not deteriorate when there is no difference

in mean vectors or no difference in covariance matrices.

Compared with the decision boundary feature extraction algorithms,

Discriminant Feature Extraction will be less efficient for parametric classifiers

where a good estimation of the decision boundary can be obtained. However,
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in some non-parametric classifiers, it is difficult or time-consuming to find the

decision boundary. In such cases, Discriminant Feature Extraction could be a

good alternative solution. Furthermore, by extracting features such that the

value of interest is preserved, Discriminant Feature Extraction can be used not

only for feature extraction for classification but also for feature extraction for any

application. More detailed comparison will be made later.

6.2 Definitions and Theorems

We will briefly review Bayes' decision rule for minimum error. Let X be an

observation in the N-dimensional Euclidean space EN under hypothesis H_:X E

0)i i=1,2. Decisions will be made according to the following rule (Fukunaga

1990):

Decide 0)1 if P(0)I)P(Xl0)I) > P(0)2)P(X10)2)

else 0)2

Let h(X) = -In -P(xl0)I) and t = InP(0)1). Then the decision rule will be
P(Xlo2) P(0)2)

Decide 0)1 if h(X) < t

else 0)2

where
, P(Xl0)I)

h(X) = -tn_ i (6.1)

t= I_ (6.2)
P(_)

For the purpose of the proposed feature extraction, we start with defining

"discriminantly irrelevant feature" as follows: 1

We distinguish "discriminantly irrelevant feature" from "discriminant redundant feature"
(Definition 3.1) in that the discriminantly irrelevant feature does not change the value of the
discriminant function while the discriminant redundant feature does not change the
classification result.
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Definition 6.1 We say the vector _k is discriminantly irrelevant for any

observation X

h(X) = h(X+C_k)

where c is a constant.

Since h(X) = h(X+C_k), the classification result for X+C_k is the same as the

classification result of X. It can be easily seen that the discriminantly irrelevant

feature does not contribute anything in discriminating between classes.

In a similar manner, we define "discriminantly relevant feature" as follows.

Definition 6.2 We say the vector _k is discriminantly relevant if there exists at

least one observation X such that

h(X) _=h(X+C_k)

where c is a constant.

From these definitions, it is clear that all discriminantly irrelevant features are

features which have no impact on the value of the discriminant function and can

be eliminated without increasing any classification error. Thus if it is possible to

find all the discriminantly irrelevant features for a given classifier, it will be also

possible to obtain the same classification accuracy as in the original space with

a reduced number of features. To eliminate discriminantly irrelevant features for

a given classifier, or equivalently to retain discriminantly relevant features, we

define the discriminant feature matrix as follows:

Definition 6.3 The discriminant feature matrix (DFM): The discriminant feature

matrix is defined as

T.DFM = 5N(X)N(X)tp(X)dX (6.3)

where N(X) =Vh(X)/IVh(X)I

p(X) is a probability density function
ah ah ah

Vh(X) = _ xl + _ x2 + ..... + _ Xn
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. p(Xlo_t)

h(X) = -m_

The property of the discriminant feature matrix is similar to that of the

decision boundary feature matrix. The proof is identical to those in section 3.5.3.

Property 6.1 The discriminant feature matrix is a real symmetric matrix.

Property 6.2 The eigenvectors of the discriminant feature matrix are

orthogonal.

Property 6.3 The discriminant feature matrix is positive semi-definite.

Property 6.4 The discriminant feature matrix of the whole space can be

expressed as a summation of the discriminant feature matrices

calculated from subspaces of the whole space if the subspaces are

mutually exclusive and exhaustive.

Now we will show that all the eigenvectors of the discriminant feature

matrix corresponding to zero-eigenvalues are discriminantly irrelevant and can

be eliminated without increasing the classification error. In this regard, we state

the following theorem.

Theorem 6.1 The eigenvectors of the discriminant feature matrix of a

pattern classification problem corresponding to zero-eigenvalues are

discriminantly irrelevant and can be eliminated without increasing any

classification error.

Proof: We assume h(X) is continuous and differentiable for all X. Let T_DFM be

the discriminant feature matrix as defined in Definition 6.3. Suppose that

rank(T.OFM) = M < N.

Let {_1, $2,.., (I)M} be the eigenvectors of T.DF M corresponding to non-zero

eigenvalues. Then, for any X, Vh(X) can be represented by a linear

combination of (I)i,i=l,M. In other words,
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M

Vh(X) = ___,ai_i where a i is a coefficient
_.1

Let q_ be an eigenvector whose corresponding eigenvalue is zero. Then, q_ is

orthonormal to any eigenvector whose eigenvalue is not zero since

eigenvectors of symmetric matrices are orthogonal to each other. It can be

easily seen that the discriminant feature matrix is symmetric (Definition 6.3).

Thus, q>is orthogonal to Vh(X) for any X since

M M

£o_Th(X)= q_,aiei = _z_,ai_ie= 0
i.,1 i,,1

Assume that q_is not discriminantly irrelevant, i.e. discriminantly relevant. Then

there exists at least one observation Y such that

h(Y) _ h(Y+ccp) where c is a constant

Let h(Y)=to, h(Y+cq_)=tl, and to_=tl. Then there will be a point Y' between Y and

Y+cq_ such that
to+t1

h(Y')= T

Physically, h(X)=.(to+t_)/2 is a surface and _7h(Y') is a normal vector to the

surface at Y'. Then Y and Y+cq_ must be on different sides of the surface

h(X)=.(to+tl)/2. This means c_o must pass through the surface h(X)=.(to+t_)/2 at Y'.

This contradicts the assumption that q_ is orthogonal to Vh(X) for any X

including _Th(Y'). Therefore if q_ is an eigenvector of the discriminant feature

matrix whose corresponding eigenvalue is zero, q_ is discriminantly irrelevant

and can be eliminated without increasing any classification error.
Q.E.D.

Figure 6.1 shows an illustration of the proof. It is impossible that cq) passes

through the surface h(X)=.(to+t_)/2 at Y' and is orthogonal to Vh(Y') at the same

time.
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Y

Vh(Y')_ °

Figure 6.1 Illustration of the proof of Theorem 6.1.

From Theorem 6.1, it can be easily seen that, if the rank of the

discriminant feature matrix is M, the minimum number of features needed to

achieve the same classification accuracy as in the original space must be

smaller than or equal to M. In particular, if the rank of the discriminant feature

matrix is 1, only one feature is needed to achieve the maximum classification

accuracy. This will happen when the covariance matrices of the two classes are

the same assuming a Gaussian ML classifier is used. However, it is noted that

all eigenvectors whose eigenvalues are not zero are not necessarily needed to

achieve the same classification accuracy as could be obtained in the original

space.

We will refer the feature extraction algorithm based on the Theorem 6.1

as Discriminant Feature Extraction. In practice, we will choose eigenvectors of

the discriminant feature matrix according to the magnitude of the corresponding

eigenvalues.

6.3 Discriminant Feature Extraction and Decision Boundary Feature Extraction

In Chapter 3, we introduced the decision boundary feature extraction

algorithm. It was shown that all the needed feature vectors for classification can

be extracted from the decision boundary. The decision boundary feature

extraction algorithm was successfully applied to parametric classifiers in

162 -



6 Discriminant Feature Extraction

Chapter 3, non-parametric classifiers in Chapter 4, and neural networks in

Chapter 5. Now we will show that the discriminant feature extraction method is a

generalized form of the decision boundary feature extraction method.

In the spectral decomposition of a matrix A (n by n), A can be

represented by (Cullen 1972)

A= _.1E1 + ;LnEn + -'" + ;LnEn (6.4)

where the matrices E i are called the projectors of A or the principal idempotents

of A. In Chapter 3, the decision boundary feature matrix is defined as follows

(Definition 3.6):

1 _N(X)Nt(X)p(X)dX (6.5)7.,DBFM = _"

There is a similarity between equations (6.4) and (6.5). In fact, the decision

boundary feature matrix can be viewed as a matrix whose principal idempotents

are constructed from normal vectors to the decision boundary. As a result, in the

decision boundary feature extraction method, a new feature set is extracted so

that the classification results are preserved.

On the other hand, in the discriminant feature extraction method, the

discriminant feature matrix is defined as follows (Definition 6.3):

T,DF M = j'N(X)N(X)tp(X)dX (6.3)

The discriminant feature matrix can be viewed as a matrix whose principal

idempotents are constructed from vectors which give changes to the value of

the discriminant function. As a result, in the discriminant feature extraction

method, a new feature set is extracted such that the value of the discriminant

function for a given classifier is preserved. Consider the example in Figure 6.1.

In the decision boundary feature extraction, the value of h(X)in (6.1) can be

changed as long as the classification of X remains the same. In Discriminant

Feature Extraction, the value of h(X) is preserved. As a result, the decision

boundary feature extraction method will be more efficient if the decision
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boundary can be exactly located, which is a general case of parametric

classifiers. However, when finding the decision boundary is difficult or time

consuming as in some cases of non-parametric classifiers, the discriminant

feature extraction method could be an alternative. Furthermore, since the

discriminant feature extraction method finds all the vectors which give changes

in the value of the discriminant function, such a generalization can be used for

feature extraction of other applications such as density estimation, non-

parametric regression, and etc.

t=o

t=tl<O
t=t2<O

Figure 6.2

t=t3>O

Decision Boundary Feature Extraction and
Discriminant Feature Extraction.

t=t4>0

6.4 Discriminant Feature Extraction

6.4.1 Discriminant Feature Extraction for Two Pattern Classes

Now we propose a procedure to calculate the discriminant feature matrix

for parametric and non-parametric classifications.

Procedure for Discriminant Feature Extraction for
Parametric/Non-Parametric Classifications

( 2 pattern class case)

1. Classify the training data using full dimensionality.
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. From correctly classified samples, estimate the discriminant feature matrix as

follows"
1 t

_OFM = L.'_ N iN i
I

where L • the number of samples correctly classified

Ni =Vh(X) / IVh(X)I and
ah ah ah

Vh(X)= _-_1 xl +a--_2 _ + ..... + _-_ x,

For non-parametric classifications, estimate Vh(X) as follows:
Ah Ah Ah

Vh(X) = _ x, + _ x2+ .....+ _ x.

3. Select the eigenvectors of the decision boundary feature matrix as new

feature vectors according to the magnitude of corresponding eigenvalues.

6.4.2 Discriminant Feature Extraction for Multiclass Case

If there are more than 2 classes, the procedure can be repeated for each

pair of classes. The total discriminant feature matrix can be calculated by

averaging the discriminant feature matrix of each pair of classes. If prior

probabilities are available, the summation can be weighted. In other words, if

there are M classes, the total discriminant feature matrix can be calculated as

_DFM =

M M

E 7_. (6.6)
i I,I_I

iiwhere T-DF M is a discriminant feature matrix between class coi and class oJi

and P((oi) is the prior probability of class coi if available. Otherwise let

P(coi)= 1/M.

6.4.3 Eliminating Redundancy in Multiclass Problems

The total discriminant feature matrix defined in equation (6.6), can be

made more efficient. Consider the following example situation. Suppose Table
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6.1 shows eigenvalues for a 2 pattern class problem. Table 6.1 also shows

proportions of the eigenvalues, classification accuracies, and normalized

classification accuracies obtained by dividing the classification accuracies by

the classification accuracy obtained using all features. With just one feature, the

classification accuracy is 91.6% which is 97.3% of the classification accuracy

obtained using all features. Thus, in this 2 class problem, if this level of accuracy

is deemed adequate, just one feature is necessary to be included in calculating

the total discriminant feature matrix. The other 19 features contributes little in

improving classification accuracy and can be eliminated in calculating the total

discriminant feature matrix. In addition, feature vectors from other pairs of

classes will improve the classification accuracy.

Table 6.1 Eigenvalues of the discriminant feature matrix.

Eigenvalue

0.323
0.211
0.149
0.093
0.069
0.048
0.039
0.026
0.018
0.012
0.006
O.0O2
0.002
0.001
0.001

0.001
0.000
0.000
0.000
0.000

Proportion of
Eigenvalue

(%1
6.7
4.4
3.1
1.9
1.4
1.0
0.8
0.5

Accumulation of Classification
Eigenvalue Accu racy

(%) (%)
6.7

11.1
14.2
16.1
17.6
18.5
19,4
19,9

91.6
93.3
92.7
92.9
91.8
93.9
94.1
94.5
94.5

Normalized
Classification

Accuracy (%)
97.3
99.1
98.5
98.7
97.6
99.8
100.0

20.3
100.4

0.4
0.3 20.5 94.7 100.6
0.1 20.7 94.3 100.2
0.0 20.7 94.7 100.6
0.0 20.7 94.5 100.4
0.0 20.8 94.7 100.6
0.0 20.8 94.5 100.4
0.0 20.8 94.1 100.0
0,0 20.8 94.1 100.0
0.0 20.8 94.1 100.0
0.0 20.8 94.1 100.0
0.0 20.8 94.1 100.0

100.4

To eliminate such redundancy in multictass problems, we define the

discriminant feature matrix of Pt (_DFM(Pt)) as follows:

Definition 6.4 Let Lt be the number of eigenvectors corresponding to largest

eigenvalues needed to obtain Pt of the classification accuracy obtained

with all features. Then the discriminant feature matrix of Pt (_'DBFM(Pt)) as
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6 Discriminant Feature Extraction

Lt

T_DFM(Pt)= _-"jLi(Pi
_-1

where X i and (Pi are eigenvalues and eigenvectors of the discriminant

feature matrix.

And the total discriminant feature matrix of Pt of multiclass problem can be

defined as

M M _j
]£DFM(Pt) = _, _-, P(Coi)P(c°J)_DFM(Pt)

i=1 j=l j=i

ii
where T.DFM(Pt ) is the discriminant feature matrix of Pt between

class coi and class coi and P(co i) is the prior probability of class coi if

available. Otherwise let P(coi)=l/M.

In the experiments to follow, Pt is set to between 0.95 and 0.97 (see section

3.5.6).

From Definition 6.4, we can calculate the discriminant feature matrix of 0.95 of

Table 6.1 as follows:

The classification accuracy using full dimensionality (20) is 94.1%. The

number of features needed to achieve classification accuracy of

89.4%(=94.1*0.95) is 1. Therefore, the discriminant feature matrix of 0.95 of

Table 6.1 is given by

1 t t
,T_,DFM(0.95 ) = _ _,i(Piq:)i = _,1(1)1(1)1

i=1

where Xi's are eigenvalues of ,T_,DFM sorted in descending order and (pi's

are the corresponding eigenvectors.
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6 Discdminant Feature Extraction

6.5 Experiments

6.5.1 Parametric Classification

6.5.1.1 Experiments with Generated Data

To evaluate closely how the proposed algorithm performs under various

circumstances, tests are conducted on data generated with given statistics

assuming Gaussian distributions. In all parametric examples, a Gaussian ML

classifier is used.

Example 6.1 In this example, data are generated for the following statistics.

of]

P(o)I) = P(o_) -- 0.5

200 samples are generated for each class. Since the covariance matrices are

the same, it can be easily seen that the decision boundary will be a straight line

and just one feature is needed to achieve the same classification accuracy as in

the original space. The eigenvalues 3.i and the eigenvectors _i of '_'DFM are

calculated as follows:

F0.671 F°.741
3,1 = 0.99971 _.2 = 0.00029 _1 = L-0.74J @2= Lo.671

Since one eigenvalue is significantly larger than the other, it can be said that

the rank of T,DF M is 1. That means only one feature is needed to achieve the

same classification accuracy as in the original space. Table 6.2 shows the

classification accuracies. The proposed algorithm finds the right feature

achieving the same classification accuracy as in the original space with one

feature.
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6 Discdminant Feature Extraction

Table 6.2 Classification accuracies of Example 6.1.

No. Features Classification Accuracy
1 95.8 (%)
2 95.8 (%) i

Example 6.2 In this example, data are generated with the following statistics.

M,=[0"001]_,=I_ 0]M2=['060'1_=[_ 01

P(0)1) = P(0)2) = 0.5

200 samples are generated for each class. In this case, there is almost no

difference in the mean vectors. The variance of feature 1 of class 0)1 is equal to

that of class 0)2 while the variance of feature 2 of class 0)1 is larger than that of

class 0)2. Thus the decision boundary will consist of two hyperbolas. However,

the effective decision boundary could be approximated by a straight line. As a

result, only one feature may be needed to achieve almost the same

classification accuracy as in the original space. The eigenvalues ;Li and the

eigenvectors (])i of T-,DFM are calculated as follows:

FO.O9] F-I.ool
XI = 0.99330 X2= 0.00670 (hl= LI.00] ¢2 =LO.O9]

Since one eigenvalue is significantly larger than the other, it can be said that

the rank of ,T-,DFM is 1. That means only one feature is needed to achieve the

same classification accuracy as in the original space. Considering the statistics

of the two classes, the rank of T.DF M gives the correct number of features to

achieve the same classification accuracy as in the original space. Table 6.3

shows the classification accuracies. The proposed algorithm find the right

feature achieving the same classification accuracy as in the original space with

one feature.

Table 6.3 Classification accuracies of Example 6.2.

No. Features Classification Accuracy
1 61.0 {%}
2 61.oI%)

i
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6 Discriminant Feature Extraction

From the examples, it can be seen that the proposed discriminant feature

extraction algorithm finds a good feature set even though there is no class

mean difference (Example 6.2) or no class covariance difference (Example 6.1).

6.5.1.2 Experiments with Real Data

Along with the proposed Discriminant Feature Extraction, five other

feature selection/extraction algorithms, Uniform Feature Design, Principal

Component Analysis (the Karhunen-Loeve transformation) (Richards 1986),

Canonical Analysis (Richards 1986), the Foley & Sammon method (Foley and

Sammon 1975), and Decision Boundary Feature Extraction are tested to

evaluate and compare the performance of Discriminant Feature Extraction. The

Foley & Sammon method is based on the generalized Fisher criterion (Foley

and Sammon 1975). For a two class problem, the Foley & Sammon method is

used for comparison. If there are more than 2 classes, Canonical Analysis is

used for comparison.

In the following test, two classes are chosen from the FSS data. Table 6.4

provides information on the classes. Figure 3.17 in Chapter 3 shows the mean

graph of the two classes.

Table 6.4 Class description of data collected at Finney Co. KS.

II SPECIES
WINTERWHEAT

No. of Sample
691

UNKNOWN CROPS 619
No. of Trainin_1400400Sample II

Figure 6.3 show a performance comparison. First the original data set is

reduced to a 17-dimensional data set using Uniform Feature Design. With 17

features, the classification accuracy is 95.5%. Discriminant Feature Extraction

achieves 91.2% and 93.7% with one and two features, respectively. Though

Discriminant Feature Extraction showed a better performance than Principal

Component Analysis and Uniform Feature Design, Decision Boundary Feature

Extraction and the Foley & Sammon method show the best performance,

achieving about the maximum possible classification accuracy with one feature.
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Figure 6.3 Performance comparison.

In the following test, two classes are chosen from the FSS data. Table 6.5

provides information on the classes. Figure 3.19 in Chapter 3 shows the mean

graph of the two classes. There is relatively little difference in the mean vectors.

Table 6.5 Class description of data collected at Finney Co. KS.

SPECIES No. of Samole No. of Trainin

WINTER WHEAT 223 223

SPRING WHEAT 474 474
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6 Discriminant Feature Extraction

Figure 6.4 show a performance comparison. With 25 features, the classification

accuracy is 92.4%. Decision Boundary Feature Extraction and Discriminant

Analysis show similar performance, outperforming other methods.

95

9O

85
A

v

O

Oo 80
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0
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0

70

65

0 2 4 6 8 10 12 14 16 18 20 22 24

Number of Features

Figure 6.4 Performance comparison.

In the following test, 4 classes are chosen from the data collected at

Hand Co. SD. on May 15, 1978. Table 6.6 provides class information. Figure

3.23 in Chapter 3 shows the mean graph of the 4 classes.
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6 Discriminant Feature Extraction

Table 6.6 Class description.

Species I Date I No. of Samples I No. of Training Samples

Winter Wheat May 15, 1978 223 223
Native Grass Pas May 15, 1978 196 196

Oats May 15, 1978 163 163
Llnknown Croos May 15, 1978 253 253

Figure 6.5 shows a performance comparison. In this experiment, Decision

Boundary Feature Extraction and Discriminant Feature Extraction outperform

other methods. Though Decision Boundary Feature Extraction and Discriminant

Feature Extraction show similar performance, Decision Boundary Feature

Extraction shows better performance when 7-10 features are used.

95

85

>, 75
o

8

¢-
._o

.o 65

55

45
8 12 16 20

Number of Features

Figure 6.5 Performance comparison.

24 28
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6 Discdminant Feature Extraction

In the next test, 6 classes chosen from the FSS data. Table 6.7 provides

description of the 6 classes. In this test, 300 samples are used for training and

the rest are used for test.

Table 6.7 Class description of the multi-temporal 6 classes.

I Date I Location

770308 I Finney CO. KS.
770626 I Finney CO. KS.
771018 I Hand CO. SD.
770503 I Finney CO. KS.
770626 I Finney CO. KS.
780726 I Hand CO. SD.

Species
WinterWheat

Winter Wheat
Winter Wheat
Winter Wheat
Summer Fallow

Sprincj Wheat

No. Sample j
691

677
662

658

643

518

9O

8O

_=_

70
0

.=_

8

¢-
.g 60

03
Or)

0 50

4O

3O

0 2 4 6 8 10 12 14 16 18 20

Number of Features

Figure 6.6 Performance comparison.

Figure 6.6 shows a performance comparison. In this example,

Discriminant Analysis shows the best performance until 3 features are used.
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6 Discriminant Feature Extraction

When more than 2 features are used, Decision Boundary Feature Extraction

shows the best performance.

6.5.2 Non-Parametric Classifications

6.5.2.1 Experiments with Generated Data

The non-parametric classifier was implemented by Parzen density

estimation using a Gaussian kernel function.

Example 6.3 In this example, class 0)1 is normal with the following statistics:

.1=[°][o

And class 0)2 is equally divided between two normal distributions with the

following statistics:

025]' 250"5 ] and M2=[ 3] _2=[ 0.5

200 samples are generated for each class. Eigenvalues Xi and eigenvectors _=

of _DFM are calculated as follows:

r 0.681 F0.741
_.1 = 0.74820, ;L2 =0.25180 and _1 = L-0.74J' _2 = L0.68.1

Figure 6.7 shows the distribution of the data and the eigenvectors of _--DFM- Table

6.8 shows the classification accuracies. The proposed algorithm find the right

feature achieving the same classification accuracy as in the original space with

one feature.
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Figure 6.7
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Data distribution of Example 6.3 and the feature vectors found by
the discriminant feature extraction method.

Table 6.8 Classification accuracies of Example 6.3.

No. Features ClassificationAccuracy
1
2

90.3 (%)
90.3 (%)

6.5.2.2 Experiments with Real Data

In the next test, there are 3 classes and each class has 2 subclasses. In

other words, 2 subclasses were combined to form a new class. By purposely

combining data from different classes, the data are made to be multi-modal.

Table 6.9 provides information on the classes. Figure 4.14 in Chapter 4 shows a

mean value graph of the 6 subclasses and Figure 4.15 in Chapter 4 shows a

mean value graph of the 3 classes each of which has 2 subclasses. 500

randomly selected samples from each classes are used as training data and the

rest are used for test.
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6 Discriminant Feature Extraction

Class

Class co1

Class _o2

Class o_j

Table 6.9 Class description.

Subclass

Winter Wheat
March 8, 1977

Spring Wheat
July 26, 1978
Winter Wheat
June 26, 1977

Spring Wheat
Sep. 21, 1978
Winter Wheat
Oct. 18, 1977
Spring Wheat
Oct. 26, 1978

I No. o! Samples
691

518

677

469

662

441

I Total No. of Sample I
1209

1146

1103

t.=
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Figure 6.8 Performance comparison.

Figure 6.8 shows a performance comparison. Discriminant Feature Extraction

and Decision boundary Feature Extraction show similar performance,
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outperforming other methods. It is noted that, in Discriminant Feature Extraction,

the decision boundary need not to be found, reducing computing time.

In the next test, there are 3 classes and each class has 2 subclasses. In

other words, 2 subclasses were combined to form a new class. Table 6.10

provides information on the classes. 500 randomly selected samples from each

classes are used as training data and the rest are used for test.

Class

Class(01

Class(02

Class e_j

Table 6.10 Class description.

Subclass
Winter Wheat
March8, 1977

No.of Samples
691

SpringWheat 454
July 9, 1978
WinterWheat 677
June26, 1977

518SpringWheat
July26, 1978
WinterWheat
Oct. 18, 1977

662

Spring Wheat 441
Oct. 26, 1978

Total No. of Sample
1145

1195

1lO3

Figure 6.9 shows a performance comparison. The classification accuracy

with 17 features is 96.0%. Discriminant Analysis shows the best performance

until 3 features are used. However, when more than 2 features are used,

Decision Boundary Feature Extraction and Discriminant Feature Extraction

outperform all other methods. Overall, Discriminant Feature Extraction and

Decision boundary Feature Extraction show similar performances.
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6.6 Conclusion

In this chapter, we considered feature extraction as eliminating features

which have no impact on the value of the discriminant function. In order to find

the discriminantly irrelevant features which have no impact on the value of the

discriminant function, we defined the discriminant feature matrix and showed

that eigenvectors of the discriminant feature matrix corresponding to zero

eigenvalues are discriminantly irrelevant features and can be eliminated

without increasing classification error. Then we proposed a procedure for the

discriminant feature extraction algorithm.
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6 Discdminant Feature Extraction

We compared the discriminant feature extraction method with the

decision boundary feature extraction method in the previous chapters and

showed that the discriminant feature extraction method is a generalized form of

the decision boundary feature extraction method. When the decision boundary

is well defined and can be easily found as in parametric classifiers, the decision

boundary feature extraction feature extraction method gives better

performances. However, if the decision boundary is not well defined or difficult

to find as in some non-parametric classifiers, the discriminant feature extraction

method gives comparable performance without the need to find the decision

boundary which is very time-consuming in some non-parametric classifiers.

Furthermore, by generalizing the concept, the technique can be used for

constructing a matrix from vectors which are useful for a given problem, such as

non-parametric regression, density estimation, and feature extraction for other

applications.

Experiments show that the discriminant feature extraction method can be

used for parametric and non-parametric classifiers, and does not deteriorate

even if there is no difference in mean vectors or in covariance matrices.

Although the discriminant feature extraction method was developed for the

discriminant function which uses a posteriori probabilities, it can be used for any

discriminant function.
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CHAPTER 7 ANALYZING HIGH DIMENSIONAL DATA

7.1 Introduction

Developments with regard to sensors for Earth observation are moving in

the direction of providing much higher dimensional multispectral imagery than

is now possible. The HIRIS instrument now under development for the Earth

Observing System (EOS), for example, will generate image data in 192 spectral

bands simultaneously (Goetz 1989). MODIS (Ardanuy et al. 1991), AVIRIS

(Porter et al. 1990) and the proposed HYDICE are additional examples.

Although conventional analysis techniques primarily developed for relatively

low dimensional data can be used to analyze high dimensional data, there are

some problems in analyzing high dimensional data which have not been

encountered in low dimensional data. In this chapter, we address some of these

problems. In particular, we investigate (1) the relative potential of first and

second order statistics in discriminating between classes in high dimensional

data, (2) the effects of inaccurate estimation of first and second order statistics

on discriminating between classes, and (3) a visualization method for second

order statistics of high dimensional data.

7.2 First and Second Order Statistics in High Dimensional Data

The importance of the second order statistics in discriminating between

classes in multispectral data was recognized by Landgrebe (1971). In that

study, it was found that small uncorrelated noise added to each band caused a

greater decrease in classification accuracy than larger correlated noise. We

begin with a test to investigate the role of first and the second order statistics in

high dimensional data. The test was done using FSS (Field Spectrometer
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7 Anab/zin,q Hi,(]h Dimensional Data

System) data obtained from a helicopter platform (Biehl et al. 1982). Table 7.1

shows major parameters of FSS.

Table 7.1 Parameters of Field Spectrometer System (FSS).

Number of Bands 60

Spectral Coverage 0.4 - 2.4 p.m
Altitude 60 m

IFOV(_round / 25 m

In order to evaluate the roles of first and second order statistics in high

dimensional data, three classifiers were tested. The first classifier is the

Gaussian Maximum Likelihood (ML) classifier which utilizes both class mean

and class covariance information. For the second case, the mean vectors of all

classes were made zero. Thus, the second classifier, which is a Gaussian ML

classifier, is constrained to use only covariance differences among classes. The

third classifier is a conventional minimum distance classifier (Richards 1986)

which utilizes only first order statistics (Euclidean distance). Note that the first

and third classifiers were applied to the original data set; the second classifier

was applied to the modified data set where the mean vectors of all classes were

made to zero so that there were no mean differences among classes.

To provide data with different numbers of spectral features, a simple

band combination procedure, referred to as Uniform Feature Design, was used.

In this procedure, adjacent bands were combined to form the desired number of

features. For example, if the number of features is to be reduced from 60 to 30,

each two consecutive bands are combined to form a new feature. Where the

number of features desired is not evenly divisible into 60, the nearest integer

number of bands is used. For example, for 9 features, the first 6 original bands

were combined to create the first feature, then the next 7 bands were combined

to create the next feature, and so on.

In the following test, 12 classes were selected from FSS data. The

selected data were multi-temporal. Table 7.2 provides information on the 12

classes. 100 randomly selected samples were used as training data and the

rest were used as test data. Figure 7.1 shows the graph of the class mean

values of the 12 classes.
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7 Analyzing High Dimensional Data

Table 7.2 Description of the multi-temporal 12 classes.

I Date J Location I Species I No. of Samples j
770308 FinneyCO. KS. WinterWheat 691
770626 FinneyCO. KS. WinterWheat 677
771018 HandCO. SD. WinterWheat 662
770503 F nneyCO. KS. WinterWheat 658
770626 F nney CO. KS. Summer Fallow 643
780726 4andCO. SD. Spring Wheat 518
780602 Hand CO. SD. Spring Wheat 517
780515 Hand CO. SD. Spring Wheat 474
780921 Hand CO. SD. Spring Wheat 469
780816 Hand CO. SD. Spring Wheat 464
780709 HandCO. SD. Spring Wheat 454
781026 HandCO. SD. Spring Wheat 441

,0 i. l l .....1 .......
I " l/-xl ........

_0 1 i i.L,.-:_lr__, _...............
......._ _-I.......i I.........llIr/

0
0 10 20 30 40 50 60

Spectral Band

Figure 7.1 Class means of the 12 multi-temporal classes.

The original 60 band data were reduced using Uniform Feature Design

to 1 through 20 feature data and the three classifiers were tested on the

reduced feature sets (1 through 20). Figure 7.2 shows a performance

comparison of the three classifiers. As expected, the Gaussian ML classifier

performs better that the other two classifiers, achieving 94.8% with 20 features.

On the other hand, the minimum distance classifier achieved about 40 %

classification accuracy with 20 features. Actually the performance of the

minimum distance classifier was saturated after four features. Meanwhile, the

classification accuracies of the Gaussian ML classifier with zero mean data

continuously increased as more features were used achieving 73.2% with 20

features. In low dimensionality (no. of features < 4), the minimum distance
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classifier shows better performance than the Gaussian ML classifier with zero

mean data. When more than 3 features are used, the Gaussian ML classifier

with zero mean data shows better performance than the minimum distance

classifier.

Figure 7.2
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Performance comparison of the Gaussian ML classifier, the
Gaussian ML classifier with zero mean data, and the minimum
distance classifier.

Figures 7.3-4 show the performances of the minimum distance classifier

and the Gaussian ML classifier with zero mean data for various number of

classes. It is interesting that the performances of the minimum distance classifier

reached saturation with 4-5 features and after that adding more features did not

make any significant change in classification accuracy. On the other hand, the

performances of the Gaussian ML classifier with zero mean data shows

improvements as more features are used as can be seen in Figure 7.4.
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Performance of the minimum distance classifier.
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Figure 7.4
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Performance of the Gaussian ML classifier with zero mean data.

It can be observed from the experiments that the second order statistics

play an important role in high dimensional data. The ineffectiveness of the

minimum distance classifier, which does not use second order statistics, is

particularly noteworthy. Though the Euclidean distance is not as effective a

measure as other distance measures which utilize the second order statistics,

the minimum distance classifier is still widely used in relative low dimensional

data due to computation cost. In particular, in computationally intensive tasks

such as clustering, the Euclidean distance is widely used.

It is noteworthy that, in the low dimension case, class mean differences play a

more important role in discriminating between classes than the class

covariance differences. However, as the dimensionality increases, the class

covariance differences become more important, especially when adjacent

bands are highly correlated and there are sizable variations in each band of
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each class. This suggests that care must be exercised in applying classification

algorithms such as the minimum distance classifier to high dimensional data.

7.3 Minimum Distance Classifier in High Dimensional Space

7.3.1 Average Class Mean Difference and Average Distance From Mean

We will next further investigate the performance of the minimum distance

classifier in high dimensional remotely sensed data. In order to analyze

qualitatively the performance of the minimum distance classifier, the Average

Class Mean Difference (ACMD) is defined as follows:

2 L i-1

Average Class Mean Difference (ACMD) = L(L-1)i._2 _L, IMi- Mjl
j=l

where L is the number of classes and M i is the mean of class _.

Generally, increasing the ACMD should improve the performance

minimum distance classifier. Similarly, the Average Distance From

(ADFM) is defined as follows:
1 L Ni

Average Distance From Mean (ADFM)= _i,_ 1 _, IX_ Mil
• j=l

where N is the total number of samples;

L is the number of classes;

N i is the number of samples of class COl;

xij is the j-th sample of class o_i;

M i is the mean of class coi.

of the

Mean

The ADFM is thus the average distance that samples are located from the

mean. Generally, decreasing ADFM will improve the performance of the

minimum distance classifier. Figure 7.5 shows the ACMD and the ADFM of the

12 classes of Table 7.2. As can be seen, the ACMD increases as more features

are added. However, the ADFM also increases.
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Figure 7.5 Graph of the Average Class Mean Difference and the Average
Distance From Mean of the 12 classes of Table 7.2.
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Figure 7.6 shows the ratio of the ACMD and the ADFM Note that the ratio

increases up to 3 features and then is saturated thereafter. Though one should
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expect variations in this effect from problem to problem, the implication is that

the performance of classifiers which mainly utilize class mean differences may

not improve much in high dimensional data, especially when correlation

between adjacent bands is high.

7.3.2 Eigenvalues of Covariance Matrix of High Dimensional Data

In high dimensional remotely sensed data, there is frequently very high

correlation between adjacent bands, and most data are distributed along a few

major components. Table 7.3 shows the eigenvalues (ordered by size) of the

covariance matrix estimated from 643-samples of Summer Fallow collected at

Finney County, Kansas in July 26, 1977, as well as proportions and

accumulations of the eigenvalues. Figure 7.7 shows the magnitude of

eigenvalues on a log scale. As can be seen, there are very large differences

among eigenvalues. The ratio between the largest eigenvalue and the smallest

is on the order of 106. A few eigenvalues are dominant and the rest are very

small in value.

It can be seen from Table 7.3 that the largest 3 eigenvalues account for more

than 95% of the total mean square value. The largest 8 eigenvalues account for

more than 99%. Most variation of data occurs along a few eigenvectors

corresponding to the largest eigenvalues and there is very little variation in the

other eigenvectors. This indicates that, assuming a Gaussian distribution, the

data will be distributed in the shape of an elongated hyperellipsoid with its

origin at the mean of the data and whose semi-axes are in the directions of the

eigenvectors of the covariance matrix of the data with lengths proportional to the

corresponding eigenvalues. Since the lengths of the semi-axes are proportional

to the eigenvalues, there are very large differences among the lengths of the

semi-axes.

189 -



7 Analyzing.High Dimensional Data

Table 7.3 Eigenvalues of covariance of high dimensional remotely sensed
data.
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Figure 7.7 Magnitude of eigenvalues (log scale).
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Without utilizing the second order statistics, a classifier such as the

minimum distance classifier assumes that data are distributed in the shape of a

hypersphere instead of hyperellipsoid. As a result, the minimum distance

classifier defines a very ineffective decision boundary, particularly in high

dimensional data. Figure 7.8 shows an example in two dimensional space. The

two classes in Figure 7.8 are, in fact, quite separable by using second order

statistics which give the information about the shape of the distribution, and in

particular, the major component along which most data are distributed.

However, the minimum distance classifier, using only the first order statistics,

defines a very unsatisfactory decision boundary, causing avoidable errors. This

phenomenon becomes more severe if data are distributed along a few major

components. On the other hand, if classes are distributed in the shape of

hypersphere, the minimum distance classifier will give a better performance.

n boundary defined by the

_ .//y_! _,aoo ,._j/ _ mi_mum distance classifier

_(_ _ _//', Dec_ion boundary defined by

Gaussian ML classifier

Figure 7.8 Classification error of the minimum distance classifier.

7.3.3 Determinant of Covariance Matrix of High Dimensional Data

The determinant is equal to the product of the eigenvalues, i.e.,

N
D ET = ['[ Xi

i-1
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7 Analyzing,High Dimensional Data

As can be seen in Table 7.3, most of the eigenvalues of the covariance matrix of

high dimensional data are very small in value. Therefore, determinants of high

dimensional remotely sensed data will have very small values. Figure 7.9

shows the magnitudes of the determinants of the 12 classes for various number

of features. In low dimensionality, the differences of determinants among

classes are relatively small. As the dimensionality increases, the determinants

decrease exponentially, indicating that the data are distributed in the highly

elongated shape. In addition, there are significant differences between classes,

indicating that there are significant differences in the actual volumes in which

the classes are distributed.
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7 Analyzing,High Dimensional Data

7.4 Diagonalizing and The Number of Training Samples

7.4.1 Diagonalizing the Data

The limited performance of the minimum distance classifier in the

previous section is mainly due to the fact that there is very high correlation

between adjacent bands in high dimensional remotely sensed data. As a result,

it is difficult to evaluate the roles of class mean differences and class covariance

differences in discriminating between classes in high dimensional data. To

better compare the roles of class mean differences (first order statistics) and

class covariance differences (second order statistics), the entire data set is

diagonalized (Fukunaga 1990), i.e., a linear transformation is applied to the

data such that the transformed data will have a unit covariance matrix. Let,

1
y= A-_tx

where is a matrix whose column vectors are the eigenvectors of Z x, the

covariance matrix of the original data

A is a diagonal matrix whose diagonal elements are eigenvalues of T-,x,

the covariance matrix of the original data

Then the covariance matrix of the transformed data Y, ,T_,y, will be an identity

matrix, i.e.,

,T_.y= I

It will be seen that this linear transformation affects only the performance of the

minimum distance classifier. The performance of the Gaussian ML classifier is

invariant under any linear transformation 2 since

(X - Mx)tZx (X - M x)

where M x is the mean vector of X and Z x is the covariance matrix of X

2 Note that this implies that any preprocessing procedure, e.g. calibration, which is merely a
linear transformation of the data will not affect classilication accuracy for a Gaussian ML

classifier.
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7 Analyzing High Dimensional Data

is invariant under any linear transformation if the transformation matrix is non-

singular (Fukunaga 1990). After diagonalizing, it is expected that the

performance of the minimum distance classifier will be improved since the

diagonalization process makes the data distribution closer to the shape of

hypersphere (Figure 7.8).

100

A

8O

•_ ,*0

2O

0 ¸

0 4 8 12 16 20 24 28 32 36

Number of Features

Gaussian ML (Mean & Coy)

Gaussian ML (Coy only)

Minimum Distance Classifier

Minimum Distance Classifier (after diagonalizing)

4O

Figure 7.10 Performance comparison (100 training samples).

Figure 7.10 shows the classification accuracy vs. numbers of features

after diagonalization. There are 40 multi-temporal classes. 100 randomly

selected samples are used for training data and the rest are used for test. As

expected, the Gaussian ML classifier shows the best performance and the peak

accuracy of the Gaussian ML classifier occurs when the number of features is

31, achieving 82.8%. When more than 31 features are used, the performance of

the Gaussian ML classifier begins to decrease slightly, indicating the Hughes

phenomenon is occurring (Hughes 1968). The Gaussian ML classifier applied

to the zero-mean data also shows peak performance with 31 features,

achieving 62.4% classification accuracy. When more than 31 features are used,
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7 Analyzing High Dimensional Data

the Gaussian ML classifier applied to the zero-mean data also shows the

Hughes phenomenon.

The minimum distance classifier applied to the original data shows very

limited performance, achieving just 26.6% classification accuracy with 40

features. In fact, the performance of the minimum distance classifier is saturated

after 4 features. After diagonalization, the performance of the minimum distance

classifier is greatly improved, achieving 64.8% classification accuracy with 36

features. It appears that, when the data are diagonalized, class mean

differences are more important than class covariance differences in

discriminating between classes in this example. However, the difference in

classification accuracy decreases as dimensionality increases. For example,

when 4 features are used, the classification accuracy of the minimum distance

classifier applied to the diagonalized data is 35.3% while the classification

accuracy of the Gaussian ML classifier applied to the zero-mean data is 19.8%,

a difference of 15.5%. When 31 features are used, the classification difference

is just 1.3% It is interesting that the Hughes phenomenon of the minimum

distance classifier occurs later compared with the Gaussian ML classifier. A

possible reason is that the number of parameters the minimum distance

classifier uses is much smaller than the number of parameters the Gaussian ML

classifier uses.

7.4.2 Estimation of Parameters and Number of Training Samples

In supervised classification, parameters are estimated from training data.

When the parameter estimation is not accurate, the performance of the classifier

is affected. In particularly, when the number of training data is limited, adding

more features does not necessarily improve the classification accuracy. In this

section, we will illustrate how inaccurate estimation of parameters affect the

performance of the minimum distance classifier and the Gaussian ML classifier

applied to the zero-mean data.

Generally, the classification error is a function of two sets of data, training and

test data and can be expressed by (Fukunaga 1990)

E(E)train,E)test)
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where Otrain and Otest are a set of parameters of training and test data.

In Fukunaga (1990), it is shown that the Bayes error, ¢(O,®), is bounded by two

sample-based estimates, Le.,

E{g(O, O)} < _:(O,O) < E _test{E:( o, °test)} (7.1)

The term ¢(o,Otest) is obtained by generating two independent sample sets,

and Otest, and using _ for training and Otest for testing. _(_,_) is obtained by

using the same data for training and test.

In the following test, the 3 classifiers are tested on the 40-class problem

(Table 3.14). The average number of samples of the 40 classes is about 300. To

obtain a lower bound of the Bayes error, all data are used for training and test

(resubstitution method) (Fukunaga 1990). The leave-one-out method

(Fukunaga 1990) is also used to obtain an upper bound of the Bayes error.

Figure 7.11 shows the performance comparison of the resubstitution method

and the leave-one-out method. Let's compare Figure 7.11 and Figure 7.10

where 100 randomly chosen samples are used for training. When 40 features

are used, the classification accuracy of the Gaussian ML classifier improved

from 81.3%(100 training samples) to 93.8%(all data are used for training).

However, the improvement of the Gaussian ML classifier applied to the zero-

mean data is particularly noteworthy. The classification accuracy increased from

60.5%(100 training samples) to 86.1%(all data are used for training) with 40

features. When 100 training samples are used, the difference of the

classification accuracies of the Gaussian ML classifier applied to the original

data and the Gaussian ML classifier applied to the zero-mean data was 20.8%

with 40 features. When all samples are used for training, the difference is

reduced to 7.7%. On the other hand, the performance of the minimum distance

classifier improves only slightly. The classification accuracy of the minimum

distance classifier applied to the original data increased from 26.6%(100

training samples) to 27.5%(all data are used for training) with 40 features, and

the classification accuracy of the minimum distance classifier applied to the

diagonalized data increased from 64.2%(100 training samples) to 67.3%(all

data are used for training).
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Figure 7.11 Performance comparison of the resubstitution method and the
leave-one-out method.

In the leave-one-out method, the accuracy improvements are smaller. The

classification accuracy of the Gaussian ML classifier is about 85.9% with 40

features and 71.9% for the Gaussian ML classifier with zero mean data. The

classification accuracy of the minimum distance classifier is 66.1% with 40

featu res.
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Figure 7.12 Performance comparison of the minimum distance classifier
applied to the diagonalized data and the Gaussian ML
classifier with the zero mean data for various numbers of
training samples.

Figure 7.12 shows the classification accuracy vs. number of features

when various numbers of training samples are used. Note that the performance

of the Gaussian ML classifier with the zero mean data greatly improved when all

data are used for training or the leave-one-out method is used, while the

performance of the minimum distance classifier improved slightly. It is noted
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7 Analyzing High Dimensional Data

that, when all data are used for training or the leave-one-out method is used,

the Gaussian ML classifier applied to the zero-mean data outperforms the

minimum distance classifier in high dimensionality. Since the Bayes error is

bounded by the two sample-based estimates (equation 7.1), it appears that the

second order statistics play an increased role in discriminating between classes

in high dimensionality.

In Figure 7.12, the difference between the resubstitution method and the

leave-one-out method is large, resulting in a loose bound on the Bayes error. A

reason for the large difference is that some of the classes have a relatively small

number of samples. To overcome that problem, we generated data from the

statistics estimated from the classes. 1000 samples were generated for each

class. The resubstitution method and the leave-one-out method were applied to

obtain a lower and a upper bound. Figure 7.13 shows the result. The

classification accuracies of the Gaussian ML classifier, the Gaussian ML

classifier applied to zero mean data, and the minimum distance classifier are

99.5%, 97.5%, and 56.9%, respectively, when all data are used for training and

test, and 99.2%, 96.0%, and 54.3%, respectively, when the leave-one-out

method is used. It is interesting that the Gaussian ML classifier applied to zero

mean data shows almost the same performance as the Gaussian ML classifier

applied to the original data in high dimensionality, significantly outperforming

the minimum distance classifier.
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Figure 7.13 Performance comparison of generated data when all data are used
for training and test, and the leave-one-out (L-method) is used.

In practice, estimation of the second order statistics of high dimensional

data is a difficult problem, particularly when the number of training samples are

limited. However, these results suggest that second order statistics provide a

great potential for discriminating between classes in high dimensionality if the

second order statistics can be accurately estimated. In many feature extraction

algorithms, the lumped covariance is used [(Fukunaga 1990) and (Foley and

Sammon 1975)]. However, the above results indicate that covariance

differences among classes also provides important information in discriminating

between classes in high dimensional data. Recently the possibility of obtaining

a better estimation of parameters using a large number of unlabeled samples in

addition to training samples has been shown, and this should be particularly

relevant in the case of high dimensional data (Shahshahani and Landgrebe

1992).
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7.5 Visualization of High Dimensional Data

As the dimensionality of data increases, it becomes more difficult to

compare class statistics, and in particular, the second order statistics. For

instance, it would not be feasible to print out mean vectors and covariance

matrices of 200 dimensional data and compare them manually. Table 7.4

shows an example of a 20 dimensional correlation matrix. It is very difficult to

manually perceive much from the numerical values; some type of visualization

aid seems called for.

Table 7.4 Correlation Matrix of 20 dimensional data.

1.00
0.95 1.00
0.94 0.97 1.00
0.94 0.96 0.99 1.00
0.93 0.95 0.98 0.99 1.00

0.91 0,94 0.97 0.99 0.99 1.00
0.90 0.93 0.96 0.98 0.99 1.00 1.00
0.89 0.92 0.95 0.97 0.98 0.99 1.00 1.00
0.88 0.91 0.95 0.97 0.98 0.99 0.99 1.00 1.00
0.86 0.89 0.93 0.98 0.97 0.98 0.99 0.99 1.00 1.00

0.85 0.88 0.92 0.95 0.96 0.98 0.98 0.99 0.99 1.00 1.00
0.83 0.86 0.91 0.93 0.95 0.97 0,98 0.98 0.99 0.99 1.00 1.00
0.82 0.85 0.90 0.93 0.94 0.96 0.97 0.98 0.98 0.99 1.00 1.00 1.00
0.81 0.84 0.89 0.92 0.94 0.96 0.97 0.98 0.98 0.99 0.99 1.00 1.00 1.00
0.79 0.82 0.87 0.90 0.92 0.94 0.96 0.97 0.97 0.98 0.98 0.98 0.98 0.99 1.00

0.77 0.80 0.85 0.87 0.90 0.92 0.94 0.95 0.95 0.95 0.95 0.95 0.95 0.97 0.99 1.00
0.76 0.78 0.83 0.85 0.88 0.90 0.92 0.94 0.94 0.94 0.94 0.93 0.93 0.95 0.98 0.99 1.00
0.76 0.78 0.82 0.85 0.87 0.89 0.92 0.93 0,93 0.93 0,93 0.93 0.92 0.94 0.98 0.99 0.99 1.00
0.75 0.77 0.81 0.84 0.98 0.89 0.91 0.92 0.93 0.93 0.93 0.92 0.92 0.94 0.98 0.99 1.00 0.99 1.00
0.74 0.75 0.80 0.83 0.85 0.87 0.90 0.91 0.92 0.92 0.92 0.92 0.91 0.94 0.97 0.98 0.99 0.99 1.00 1.00

Kim and Swain proposed a method to visualize the magnitude of

correlation using gray levels (Kim and Swain 1990). We further elaborate on

this method and propose a visualization method of mean vectors and

covariance matrices along with standard variations using a color coding

scheme and a graph. We will call this visualization method of statistics the

statistics image. Figure 7.14 shows the format of the statistics image. Statistics

images consists of a color-coded correlation matrix, a mean graph with

standard deviation and a color code. Figure 7.15 shows the palette design for

the color code. Figure 7.16 shows the actual look of the color code for

correlation matrix in gray scales. The color changes continuously from blue to

red with blue indicating a correlation coefficient of -1 and red indicates that the

correlation coefficient is 1. In the mean graph part, the mean vector is displayed

plus or minus one standard deviation. At the bottom of the statistics image, the

color code is added for easy comparison.
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Color-coded
correlation matrix

Mean graph
with standard
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Figure 7.14 Format of the statistics image.
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Figure 7.15 Palette design.
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Figure 7.17 shows the statistics images of Spring Wheat, Oats, Summer Fallow,

and Native Grass Pasture which were collected on July 26, 1978 in gray scale.

The green lines in the images indicate water absorption bands. At a glance, one

can subjectively perceive how each band is correlated and easily compare the

statistics of the different classes. It is easy to see that there are significant

differences in the class correlation, suggesting probable separability via a

classifier. Figure 7.18 shows the statistics images of Spring Wheat collected on

May 15 1978, June 2 1978, July 26 1978, and August 16 1978 in gray scale.

The statistics images clearly show how the statistics of the Spring Wheat have

changed over the period. The statistics image will provide a valuable means in

visualizing statistics of high dimensional data.
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Figure 7.16 The actual look of the color code (gray scale).
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7.6 Conclusion

Advancement in sensor technology will provide data in much higher

dimensions than previous sensors. Although such high dimensional data will

present a substantial potential for deriving greater amounts of information, some

new problems arise that have not been encountered in relatively low

dimensional data. In this chapter, we examined the possible roles of first and

second order statistics in discriminating between classes in high dimensional

space. It is observed that a conventional minimum distance classifier which

utilizes only the first order statistics failed to fully exploit the discriminating

power of high dimensional data. By investigating the characteristics of high

dimensional remotely sensed data, we demonstrated the reason for this limited

performance. We also investigated how the degree of accuracy in estimating

parameters affects the performance of classifiers and especially the potential of

second order statistics in discriminating among classes in high dimensional

data.

Recognizing the importance of second order statistics in high dimension

data, it is clear that there is a greater need to better represent the second order

statistics. For that purpose, we proposed a visualization method of the first and

the second order statistics using a color coding scheme. By displaying the first

and the second order statistics using this scheme, one can more easily

compare spectral classes and visualize information about the statistics of the

classes.
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CHAPTER 8 SUMMARY AND SUGGESTIONS FOR FURTHER WORK

8.1 Summary

In this research, three main subjects are studied: (1) fast likelihood

classification; (2) a new feature extraction algorithm; (3) characteristics of high

dimensional data and problems in analyzing high dimensional data.

In Chapter 2, a fast likelihood classification was proposed to reduce the

processing time of high dimensional data. As the dimensionality and the

number of classes grow, the computation time becomes an important factor.

Based upon the recognition that only a small number of classes are close to

each other even when there are a large number of classes, a multistage

classification was proposed. In the early stages where a fraction of the total

features are used, classes whose likelihood values are smaller than a threshold

are truncated, i.e., eliminated from further consideration so that the number of

classes for which likelihood values are to be calculated at the following stages

is reduced. It was shown that the computing time can be reduced by a factor of 3

to 7 using the proposed multistage classification while maintaining essentially

same accuracies when the Gaussian ML classifier is used. This method will

make it possible to extract detailed information from high dimensional data

without increasing the processing time significantly.

In Chapter 3, a new feature extraction algorithm was proposed which

better utilizes the potential of high dimensional data. The method is directly

based on the decision boundary. It was shown that all the necessary features

for classification can be extracted from the decision boundary. The proposed

decision boundary feature extraction algorithm has desirable properties: (1) it

does not deteriorate when there is little or no difference in mean vectors or
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8 Sumrnant,

when there is little or no differences in covariance matrices; (2) it predicts the

minimum number of features necessary to achieve the same classification

accuracy as in the original space; (3) it can be used both for parametric

classifiers and non-parametric classifiers. In Chapter 3, the decision boundary

feature extraction algorithm was applied to parametric classifiers. It was shown

the performance of the decision boundary feature extraction method compares

favorably with those of the conventional methods.

In Chapter 4, the decision boundary feature extraction algorithm was

adapted to non-parametric classifiers. Since non-parametric classifiers do not

define decision boundaries in analytic form, decision boundaries must be found

numerically. In Chapter 5, the decision boundary feature extraction algorithm

was applied to neural networks. First, a feature extraction method for neural

networks using the Parzen density estimator was proposed. To apply the

decision boundary feature extraction method directly to neural networks, we

defined the decision boundary in neural networks. From the decision boundary,

a new feature set is calculated. Experiments showed that the decision boundary

feature extraction method works well with neural networks.

In Chapter 6, the discriminant feature extraction method, which is a

generalization of the decision boundary feature extraction method, was

proposed. Comparisons between the decision boundary feature extraction

method and the discriminant feature extraction method were made.

In Chapter 7, some problems in analyzing high dimensional data are

investigated. In particular, the increased importance of the second order

statistics were studied. We also investigated how inaccurate estimation of first

order and second order statistics affect the performance of classifiers in

discriminating between classes in high dimensionality. To help human

interpretation and perception of the second order statistics of high dimensional

data, a visualization method of the second order statistics using a color code

and a graph was proposed.
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8 Summary

8.2 Suggestions for Further Work

The high dimensional multispectral imagery that future sensors are

projected to generate will provide a great potential for analyzing the Earth

resources. For example, the HIRIS instrument will generate image data in 192

spectral bands. In processing such high dimensional data, there will be many

challenges to be overcome. It will be almost infeasible to use all 192 bands in

analysis. First of all, estimation of statistics of such high dimensional data will be

a very difficult problem, particularly when the number of training samples is

limited. As a result, using all 192 bands for analysis will not necessarily produce

an improved result. Figure 8.1 shows an example. There are 6 classes and

Table 8.1 provides information about the classes.

Table 8.1 Class description of the multi-temporal 6 classes.

Date Location

.... f --I -

May 3, 1977
March 8, 1977

March 8, 1977
June 26, 1977
,luma 26. 1977

Finned/CO. KS.

Finney CO. KS.

Finney CO. KS.
Finney CO. KS.
Finney CO. KS.

Winter Wheat

Unknown Crops
Winter Wheat

Unknown Crops
Winter Wheat

Summer Fallow

658

682
691

619
677

643

Let 100 randomly selected samples be used for training and the rest for test. As

can be seen from Figure 8.1, the peak of the classification accuracy occurs

when 29 features are used. When more than 29 features are used, the

classification accuracy actually begins to decrease.
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Figure 8.1 Classification accuracy vs. number of features.

In addition, if feature selection/extraction is done based on the estimated

statistics of such high dimensional data, the resulting feature set may not be

reliable. Figure 8.2 shows an example. There are 6 classes and Table 8.1

provides information on the classes. Again let 100 randomly selected samples

be used for training and the rest for test. The decision boundary feature

extraction method was applied to 29 dimensional data and 50 dimensional

data. As can be seen, the classification accuracy with 29 dimensional data is

better than that with 50 dimensional data. The result indicates that when the

number of training samples is limited, using more features results in a poorer

estimation of statistics which, in turn, decreases the performance of the feature

extraction method which uses the estimated statistics.
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Figure 8.2 Feature extraction and number of features.

Thus, it is desirable to reduce the original dimensionality using some

kinds of preprocessing techniques such that an estimation of statistics in the

reduced dimensionality can be reliable. Then feature selection/extraction

methods can be applied at the reduced dimensionality, further reducing the

dimensionality. Finally, some classification/analysis techniques can be applied

to the new data set selected by the feature selection/extraction method. Figure

8.3 illustrates such a processing scheme for high dimensional data. With the

FSS data which has 60 spectral bands, it was observed that a dimensionality of

about 20-30 gave the peak performance for preprocessing. In most cases, 10-

20 features gave about the maximum classification accuracy. However, these
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number can be different depending on the original dimensionality, the

complexity of problem, the number of available training samples, the quality of

estimation of statistics, etc. Analytically determining the dimensionality for

preprocessing and for classification/analysis is one of the important topics in

analyzing high dimensional data.

192 Dimensional Data I

Pre-processing
Feature
Selection/Extraction

Classification / Analysis

Figure 8.3 Pre-processing of high dimensional data.

The preprocessing techniques must not be too complex nor depend too

much on the estimated statistics. Otherwise, the Hughes phenomenon may still

occur. In this research, a band combination procedure (Uniform Feature

Design) has been used as the preprocessing technique. Although the band

combination procedure (Uniform Feature Design) has given acceptable and

reliable results, the method is not optimum. Another possible way is to base the

preprocessing on the estimated statistics of the whole data set [(Wiersma and

Landgrebe 1980) and (Chen & Landgrebe 1989)]. Using the whole data set, it is

expected that the estimation of parameters may be more accurate.

More research in the preprocessing techniques will definitely enrich the

benefits of the high dimensional data, and improve the performance of

classifiers and analyzer.
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Appendix A

Normal Vector to Decision Boundary

In order to find the decision boundary feature matrix of a pattern

classification problem, one must be able to find a vector normal to the decision

boundary at a point on the decision boundary. Under some conditions which

are met in most pattern classification problems, one can find a vector normal to

the decision boundary at a point on decision boundary using the following

theorem.

Theorem A.1 If Vh _=0 at Xo and it is continuous in the neighborhood of Xo,

then the vector normal to the decision boundary at Xo is given by (Faux and

Pratt 1981 )

Vh(X) (X=Xo)

If the Gaussian ML classifier is used assuming a Gaussian distribution for

each class, h(X) is given by

h(X) =-In P(xI°)I) - InP(Xlo_l) + InP(Xlo)2)
P(Xlo)2)

1 1 1
= _. (X _ M1)t.T_,i1 (X_M1) + _-InlT_,ll -_ (X- M2)t_21 (X- M2)

And Vh will be given by

Vh = Y_.,11(X - M1) - :S21(X - M2) = ( T--,i1 -- T--,21)x + (T-"21 M2- _:ilml)

Then the vector normal to the decision boundary at Xo is given by

N= Vh(X)lx=xo = ( T-11- _21)Xo + (T-'21 M1- Z;i1M2) (A.1)

The following theorem gives the point where the straight line connecting

two points P1 and P2 meets the decision boundary. Theorems A.1-2 can be
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employed to implement the proposed procedure to calculate a decision

boundary feature matrix for parametric classifiers.

Theorem A.2 If P1 and P2 are on different sides of a decision boundary

h(X) = t assuming that a Gaussian ML classifier is used, the point X0 where

the line connecting P1 and P2 passes through the decision boundary is

given by

Xo=uV+ Vo ' (A.2)

where V0 = P1

V = P2 - P1
t - C'

U =-----_ if a = 0,

-b + "_b 2 - 4a(c' - t)
u = 2a and0_<u_<lifa_0,

1 vt(7_,l 1 - T,21)V,a=_

b = v0t(T-11--_T._21)V--(Mt17-,iI - M _Y-,21)V,

C' _" v0t(T'l 1- _,21)Vo - t -1 t?T,21)Vo+= " (M17_,1 - M c,

1 t "1 1 niT-,,[
C =_" (Mt_,ilM1 - M2T"2 M 2) +_ IT.2

Proof: h(X) is given by

h(X) =-In P(xlml) - InP(Xlel) + InP(Xlco2)
P(Xloo2)

1 1 1
= _ (X - M1)tT_,i1 (X - M1)+ _ InlT-,_l- _ (X - M2)tT_,_1(X - M2)

1 1
- tz;11X _" MtT-'llM1 + Inl_,ll=21 Xt_11X_ M1 + 2

1 xt).,2,X + M_,:_2'x 1 t_-I 1_-- _ _M2z, 2 M2 - _ 1nl7--212

1 xt(zl 1 _21)X (Mr1 -, t -1-- -- -- T,1 -M27-. 2 )X=2

1 1 nlT,1l
+ 2" (Mt'zilM' - Mt_T2'M2) + 2 )-"2
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_1 xt(_l 1 _ Z21)X _ (etlT_,l1 _ Mt T.21)X + c
-2

1 (et_11M1 t -1 1 nlE;ll
where c= _ - M2_,2 M2 ) + _ IT_.2

Let Xo=uV+ Vo where u is a scalar. Then h(Xo)=h(uV+ Vo ) is given by

h(uV+ Vo )
1

= _" (uV+ Vo)t(_'l 1 - Z21)(U V+ Vo) - (atl'_'l 1 - a t_'_'21)(uv+ Vo) + C

1

-----{1 vt(_l I _ _21)V}eu 2 + {v0t(_,lI _ Z21)V}eu + _.v0t(_l I _ _21)V0

_ {(MtlT_,I1 _ M_T.,21)V}.u - (MtlT_,i1 - Mt_T_,21)Vo+ c

= {1 vt(_,lI _ _,21)V}eu2 + {v0t()-,11_ T,21)V _ (Mr T_,II _ Mt_T,21)V}.u+ c'

I
where c'= _ v0t(Zl 1 -- T'21)V0 - (MtlZl 1 - M2Z21)Vo + c

1
= - = - (M1_1Let a _ vt(_l 1 _'21)V, b Vot(_,l 1 - _21) v t -1 _ M_zT_.21)V. Then

h(uV+ V 0 ) = a.u 2 + b.u + c' = t

Let f(u)=h(uV+ V 0 ) - t = a.u 2 + b.u + c' - t

Then the solutions to f(u)=0 are given by

t - c'
If a = 0, u --'- b

-b + _/b 2 - 4a(c' - t)
Ifa_=0, u= 2a

Therefore the point which is on the straight line uV+ V 0 and on the decision

boundary h(X)=t can be given by

Xo=uV+ Vo

where u=-_ifa=0,
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-b + _/b 2 - 4a(c' - t)
u- 2a and 0 <u < 1 if a_0,

1
a = _ Vt(T_,11- T_._I)v,

b = Vot(T-,11- T--_I)v - t -1(M1T_,1 - M t_T.21)V,

1
C'= _" Vot(T_.,11_ T_.,21)Vo_ (M1T_.,lt-1 _ M t_T-,21)Vo+C,

1 t -1 1 inlZll
C _ (etT-,11e 1 e2) +_"= - M2T-'2 IT-,21

Equation (A.2) can be used to calculate the point on the decision boundary from

two samples classified differently and equation (A.1) can be used to calculate a

normal vector to the decision boundary.

Example A.I Assuming that a Gaussian ML classifier is used, the mean vectors

and covariance matrices of two classes are given as follows:

.,=[ ,,=Io ,O ,]
M2= 1 , = LO.5 1 j

P(ml) = P(o)I) = 0.5

The inverses and determinants of E;1 and T,2 are given by

Z;i1 =_-4[_;.5-_1"5], det(T.1) = 0.75

_;21 = 34[-; .5-0 "5]' det(T2) = 0.75

Let P1=(1,0) and P2=(1,2)be points on the different sides of the decision

boundary. Then the equation of a straight line connecting the two points is given

as follows:

uV+ V o where V= P2-P1 =[0], Vo = P1 =[_)]

220 -



Appendix A

Then the point(s) where the decision boundary and the straight line meets are

given by

X = uV + Vo

where

Therefore,

c

!

t - c' c'
U= b ---b

b Mot(T_,11-- T_,21)V _ t -1 t -1= (M1T. 1 - M2T_,2 )V,

1 - T_,21)Vo - (atl,T_,l I - M_T.21)Vo + c,c'= _ Vo'(_,l_

1 t -1 t -1 1 n _11

c--_-(MI,_, 1 M1-M2T_2M2)+ _"

I t -I _ MtT_,2IM2 )
= _"(MI>".I M I

r 1 -0.5T1 r 1 -0.5T-11
=2([ 1 -1]L..-0.5 1 ]L-1]-[ -1 1]L-0.5 1 ILl ])

=0
t -1

= -(MI>",I - M_21)Vo

r l-O.5TI] 1]r I -O.STI]=-[1-1]L_0.5 1 _lL0j+[-1 L-O.5 1 ]L0]

= -1.5 -1.5 = -3

= - (Mt1_lI - M_21)V

-[1-1] I- 1 -0.5T°] [-1 1] I- 1 -0"5TO]= L-0.5 1 _rL2J + L-0.5 1 Jl_2J

=3+3=6

u = 0.5

x=o. v+vo=
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class o_

M=

class (ol

Decision boundary

Figure A.1 Solution of h(uV+ V 0 )=t where u needs to be found.
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Appendix B

Appendix B

This appendix contains source code listings for the algorithms involved, due to
its length it has not been included in all copies of this report. It is available upon

request to the authors.
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